Advertisement

Holz als Roh- und Werkstoff

, Volume 64, Issue 1, pp 53–61 | Cite as

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) wood-panels exposed out of ground contact in Sweden for two years

  • Å. BlomEmail author
  • M. Bergström
ORIGINALARBEITEN ORIGINALS

Abstract

In this study, the durability of 230 wood panels, consisting of both Scots pine (Pinus sylvestris) and Norway spruce (Picea abies), were examined in an above-ground durability field test, for two years, in southern Sweden. The samples consisted of three pieces of wood, 22×95×500 mm3. The pieces were screwed together with an overlap so as to obtain an efficient moisture trap. The results of the durability test showed large differences between Scots pine sapwood and heartwood. Sapwood displayed unacceptably high moisture contents and fungal discoloration, while heartwood had low and stable moisture contents, and lesser discoloring. Norway spruce had moisture dynamics similar to pine heartwood, although a some what higher moisture content was recorded. The differences in moisture dynamics among the spruce samples, which were divided into: juvenile wood, mature wood with horizontal annual rings, and mature wood with vertical annual rings, were small. Juvenile wood showed more discoloring caused by mould fungi. The samples with horizontal annual rings suffered massive cracks.

Keywords

Moisture Content Annual Ring Score Plot Pinus Sylvestris Picea Abies 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zweijährige Bewitterungsversuche in Schweden mit unbehandelten Brettern aus Kiefer (Pinus sylvestris) und Fichte (Picea abies)

Zusammenfassung

Für diese Arbeit wurde über einen Zeitraum von zwei Jahren die Dauerhaftigkeit von 230 Brettern aus Kiefer (Pinus sylvestris) und aus Fichte (Picea abies) in einem Freilandversuch in Südschweden untersucht. Die Prüfkörper bestanden aus drei jeweils 22×95×500 mm3 grossen Brettabschnitten. Diese waren überlappend zusammengeschraubt, um Feuchtenester zu erzeugen. Die Versuchsergebnisse zeigen grosse Unterschiede zwischen dem Kiefernsplint- und -kernholz. Das Kiefernsplintholz wies eine unzuträglich hohe Holzfeuchte und Pilzverfärbungen auf, während das Kiefernkernholz eine niedrigere Holzfeuchte und geringere Verfärbung zeigte. Die Fichtenprüfkörper zeigten einen ähnlichen Feuchteverlauf wie die Kiefernkernholzproben, obwohl eine etwas höhere Holzfeuchte gemessen wurde. Die Unterschiede im Feuchteverlauf bei Fichtenprüfkörpern aus juvenilem Holz, Reifholz mit liegenden Jahrringen sowie Reifholz mit stehenden Jahrringen, waren gering. Das juvenile Holz wies einen höheren Anteil schimmelpilzbedingter Verfärbungen auf. Die Proben mit liegenden Jahrringen wiesen massive Risse auf.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anonymous (2000) Simca-P 8.0 User Guide. Umetrics AB, UmeåGoogle Scholar
  2. 2.
    Augusta U, Rapp A (2003) The natural durability of wood in different use classes. IRG/WP/03-10457, International Research Group on Wood Preservation, IRG Secretariat, StockholmGoogle Scholar
  3. 3.
    Bergström B, Gustavsson G, Gref R, Ericsson A (1999) Seasonal changes of pinosylvine distribution in the sapwood/heartwood boundary of Pinus sylvestris. Trees 14:64–71Google Scholar
  4. 4.
    Bergström M, Rydell Å, Elowson T (2004) Durability of Untreated Norway Spruce (Picea abies) Exposed Outdoors Above Ground for Nine Years. Holzforschung 58:167–172CrossRefGoogle Scholar
  5. 5.
    Bergström M, Rydell Å, Thörnqvist T (2005) Durability and Moisture Dynamics of Norway spruce (Picea abies) heartwood and sapwood. In: Proc. Woodframe Housing Durability and Disaster Issues, Aladdin Resort & Casino, Las Vegas, NV, October 4–6, 2004. The Forest Products SocietyGoogle Scholar
  6. 6.
    Carey JK (2002) L-joint trials: Part 1: Observations on the process of colonisation and decay. IRG/WP 02–20250. The International Research Group on Wood Preservation, IRG Secretariat StockholmGoogle Scholar
  7. 7.
    CEN (1993) EN 330. Wood preservatives – Field test method for determining the relative protective effectiveness of a wood preservative exposed out of ground contact: L-joint method. European committee for standardizationGoogle Scholar
  8. 8.
    CEN (1994) EN 350-2. Durability of wood and wood-based products – Natural durability of solid wood – Part 2: Guide to natural durability and treatability of selected wood species of importance in Europe. European committee for standardizationGoogle Scholar
  9. 9.
    CEN (1996) ENV 12037. Wood preservatives – Field test method for determining the relative protective effectiveness of a wood preservative exposed out of ground contact – Horizontal Lap-joint method. European committee for standardizationGoogle Scholar
  10. 10.
    Elowson T, Bergström M, Hämäläinen M (2003) Moisture dynamics in Norway spruce and Scots pine during outdoor exposure in relation to different surface treatments and handling conditions. Holzforschung 57:291–227CrossRefGoogle Scholar
  11. 11.
    Ericsson T, Fries A, Gref R (2001) Genetic correlations of heartwood extractives in Pinus sylvestris progeny tests. Forest Genet 8(1):73–79Google Scholar
  12. 12.
    Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (1999) Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA & PLS). Umetrics AB, UmeåGoogle Scholar
  13. 13.
    Fengel D, Wegener G (1984) Wood: Chemistry, ultrastructure and reactions. Walter de Gruyter & Co, BerlinGoogle Scholar
  14. 14.
    Fries A, Ericsson T, Gref R (2000) High heritability of wood extractives in Pinus sylvestris progeny tests. Can J Forest Res 30:1707–1713CrossRefGoogle Scholar
  15. 15.
    Johansson P, Jermer J, Johansson I (1999) Field trial with wood preservatives for class AB. Progress report No. 1. Results after 3 years exposure, Swedish National Testing and Research Institute, SP Report 1999:27 (in Swedish)Google Scholar
  16. 16.
    Johansson P, Jermer J, Johansson I (2001) Field trial with wood preservatives for class AB. Progress report No. 2. Results after 5 years exposure. Swedish National Testing and Research Institute, SP Report 2001:33 (in Swedish)Google Scholar
  17. 17.
    Jolliffe IT (1986) Principal Component Analysis. Springer, New YorkGoogle Scholar
  18. 18.
    Panshin AJ, de Zeeuw C (1980) Textbook of Wood Technology, Vol 1. 4th ed. McGraw-Hill, New YorkGoogle Scholar
  19. 19.
    Rydell Å, Bergström M, Elowson T (2005a) Mass loss and moisture dynamics of Scots pine (Pinus sylvestris) exposed outdoors above ground in Sweden. Holzforschung 59:183–189CrossRefGoogle Scholar
  20. 20.
    Rydell Å, Bergström M, Elowson T (2005b) Moisture Dynamics in Coated Norway Spruce During Nine Years of Outdoor Exposure Above Ground in Relation to Different and Handling Conditions. In: Proc. Woodframe Housing Durability and Disaster Issues, Aladdin Resort & Casino, Las Vegas, NV, October 4–6, 2004. The Forest Products SocietyGoogle Scholar
  21. 21.
    Sandberg K (2004) Utomhusexponering av gran under 1.5 år. Report P0401003, Trätek, Stockholm (in Swedish)Google Scholar
  22. 22.
    Sandberg K, Lindgren O (2003) Measurement of spruce moisture gradients using CT scanning during three life cycles of liquid water absorption and desorption in end grain. In: Proc. of the Fifth International Conference on Image Processing and Scanning of Wood, IWSS 5, organized by Joanneum Research Graz, Bad Waltersdorf, Austria, March 23–26, 2003Google Scholar
  23. 23.
    Shupe TF, Choong ET, Yang CH (1996) The effects of silvicultural treatment on the chemical composition of plantation-grown Loblolly pine wood. Wood Fiber Sci 28(3):295–300Google Scholar
  24. 24.
    Sweet SA (2003) Data Analysis with SPSS: A First Course in Applied Statistics, 2nd edn. Allyn and Bacon, BostonGoogle Scholar
  25. 25.
    Thörnqvist T (1993) Juvenile Wood in Coniferous Trees. Swedish Council for Building Research, StockholmGoogle Scholar
  26. 26.
    Viitanen H (1996) Factors affecting the development of mould and brown rot decay in wooden material and wooden structures: Effect of humidity, temperature and exposure time. Swedish University of Agricultural Sciences, Department of Forest Products, UppsalaGoogle Scholar
  27. 27.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis – A tutorial. Chemometr Intell Lab 2:37–52CrossRefGoogle Scholar
  28. 28.
    Yngvesson M, Jirjis R, Nylinder M (1993) Pulp and chemical properties of wood with different growth rates, from first thinnings of spruce. Report No 238 (in Swedish). Swedish University of Agricultural Sciences, Department of Forest Products, UppsalaGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.School of Technology and Design, Department of Forest and Wood TechnologyVäxjö UniversityVäxjöSweden

Personalised recommendations