Holz als Roh- und Werkstoff

, Volume 63, Issue 3, pp 237–240 | Cite as

NMR spectroscopy of ozonated wastewaters obtained from steaming of Fagus silvatica

  • M. IrmouliEmail author
  • J. P. Haluk


NMR 1H and 13C spectroscopy was successfully used to monitor the ozonation of wastewaters generated during the steaming treatment of green lumber of beech wood (Fagus sylvatica). A noticeable diminution of signals from aromatic cycle was observed. An increase of the carbonyl and carboxyl group was also noticed. The signals from the carbohydrates were constant after the ozonation. This study clearly suggest that ozonation is an effective means to degrade the phenolic compounds generated during the steam treatment.


Ozonation Lignin Chemical Oxygen Demand Condensed Tannin Ozonation Treatment 

NMR- Spektroskopie ozonisierter Abwässer von dampfbehandelter Buche (Fagus silvatica)


1H und 13C NMR-Spektroskopie wurden erfolgreich eingesetzt, um die Ozonisierung von Abwässern, die während der Dampfbehandlung von waldfrischem Buchenschnittholz (Fagus silvatica) entstehen, zu registrieren. Eine deutlich merkbare Verminderung der Signale aromatischer Ringe wurde beobachtet. Eine Zunahme der Carbonyl- und Carboxyl-Gruppen wurde ebenfalls beobachtet. Die Signale der Kohlenhydrate waren nach der Ozonisierung konstant. Diese Untersuchung weist deutlich darauf hin, dass die Ozonisierung eine wirksame Methode zum Abbau phenolischer Komponenten darstellt, die während der Dampfbehandlung entstehen.


  1. Bardet M, Gagnaire R, Nardin R, Robert D, Vincendon M (1986) Use of 13C enriched wood for structural NMR investigation of wood and wood components; cellulose and lignin in solid and in solution. Holzforschung 40:17–23Google Scholar
  2. Chirat C, Lachenal D (1997) Effect of hydroxyl radicals on cellulose and pulp and their occurence during ozone bleaching. Holzforschung 51(2):147–154CrossRefGoogle Scholar
  3. Ek M, Gierer J, Jansbo K, Reitberger T (1989) Study on the selectivity of beaching with oxygen-containing species. Holzforschung 43:391–396CrossRefGoogle Scholar
  4. Eriksson T, Gierer J (1985) Studies on the ozonation of structural elements in residual kraft lignins. J Wood Chem Technol 5:53–84CrossRefGoogle Scholar
  5. Eriksson T, Reitberger T (1995) Formation of hydroxyl radicals from direct ozone reactions with pulp constituents. In: 8th International symposium on wood and pulping chemistry. Helsinki, Finland, vol II, pp 349–354Google Scholar
  6. Field JA, Leyendeckers MJH, Sierra-Alvarez R, Lettiga G, Habets LHA (1998) The methanogenic toxicity of bark tannins and the anaerobic biodegradability of water soluble bark matter. Water Sci Technol 20(1):219–240CrossRefGoogle Scholar
  7. Haluk JP, Metche M (1986) Caractérisation chimique et spectrographique de la lignine de peuplier par acidolyse et ozonolyse. Cell Chem Technol 20:31–50Google Scholar
  8. Hoigne J, Bader H (1976) The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Res 10:377–386CrossRefGoogle Scholar
  9. Hoigne J, Bader H (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water. Dissociating organic compounds. Water Res 17:185–194CrossRefGoogle Scholar
  10. Irmouli M, Haluk JP (1996) Evolution of pollution charge in the wastewater from steaming wood of Fagus silvatica L. 4ème colloque, Sciences et Industries du Bois, 11–13 September, Nancy, pp 527–534Google Scholar
  11. Irmouli M, Haluk JP, Kamdem DP, Charrier B (2002) chemical characterization of beech condensate. J Wood Chem Technol 22(2, 3):127–136CrossRefGoogle Scholar
  12. Johansson I, Saddler JN, Beatson R (2000) Characterization of the polyphenolics related to the colour of western red cedar (Thuya plicata Donn) heartwood. Holzforschung. 54:246–254CrossRefGoogle Scholar
  13. Nakamuro K, Veno H, Nakao M, Sayato Y (1990) Formation of hydrogen peroxide by aqueous ozonation of humic acids and aromatic hydrocarbons. Chemosphere 20(5):525–531CrossRefGoogle Scholar
  14. Pretsch E, Clerc T, Seibl J, Simon W (1989) Tables of spectral data for structure determination of organic compounds, 13C NMR, 1H NMR, IR, MS, UV/vis. Springer,Berlin Heidelborg New YorkGoogle Scholar
  15. Pryor WA (1994) Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radic Biol Med 17(5):451–465CrossRefGoogle Scholar
  16. Staehelin J, Hoigne J (1985) Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19(12):1206–1213CrossRefGoogle Scholar
  17. Sun Y, Argyropoulos D (1996) A comparison of the reactivity and efficiency of ozone, chlorine dioxide, dimethyldioxirane and hydrogen peroxide with residual kraft lignin. Holzforschung 50(2):175–182CrossRefGoogle Scholar
  18. Tiainen E, Drakenberg T, Tamminen T, Kataja K, Hase A (1999) Determination of phenolic hydroxyl groups in lignin by combined use of 1H NMR and UV spectroscopy. Holzforschung 53:529–583CrossRefGoogle Scholar
  19. Wanli M, Kamdem DP, Loconto P, Pan Y, Gage D, Dawson-Andoh B (1999) Characterization and bioremediation of birch condensate. Wood Fiber Sci 31(4):370–375Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire de Recherche et DéveloppementEcole Supérieure du BoisNantes cedex 3France
  2. 2.LERMABENSAIAVandoeuvre lès NancyFrance

Personalised recommendations