Holz als Roh- und Werkstoff

, Volume 63, Issue 3, pp 231–236 | Cite as

Tracheid length prediction in Pinus palustris by means of near infrared spectroscopy: the influence of age

  • B. K. Via
  • T. F. ShupeEmail author
  • M. Stine
  • C. L. So
  • L. H. Groom


The prediction of tracheid length using near infrared (NIR) wavelengths can provide either useful or misleading calibrations depending on the context. This can happen since tracheid length is not directly related to the absorbance at any wavelength but is instead the result of a secondary correlation with some unknown chemical constituent. In this work, the effect of tree age and height on NIR predictability was investigated since tracheid length and chemistry may vary as a function of location within the tree. It was found that tracheid length predictability did not change with height but decreased with age. As a result, predicting tracheid length regardless of age was good (R2 = 0.72) while predictability holding age and height constant was mostly low to moderate with the exception of rings 1 and 4 which was quite strong.


Principal Component Regression Near Infrared Spectroscopy Primary Cell Wall Juvenile Wood Mature Wood 

Vorhersage der Tracheidenlänge in Pinus palustris mittels NIR-Spektroskopie: Einfluss des Alters


Das Abschätzen der Tracheidenlänge mittels NIR-Spektroskopie kann je nach Sachlage zu brauchbaren oder auch irreführenden Kalibrierungen führen. Das kommt daher, dass die Tracheidenlänge nicht unmittelbar mit der Extinktion bei irgendeiner Wellenlänge in Beziehung steht, sondern über eine indirekte Korrelation mit unbekannten Inhaltsstoffen. In dieser Arbeit wird der Einfluss des Baumalters und der Höhe auf die Verlässlichkeit der NIR-Messung untersucht, da sowohl die Tracheidenlänge als auch die chemischen Bestandteile je nach Position im Baum varieren können. Es zeigte sich, dass die Vorhersagbarkeit der Tracheidenlänge sich nicht mit der Baumhöhe ändert, jedoch mit dem Alter abnimmt. Insgesamt war die Vorhersagbarkeit der Tracheidenlänge unabhängig vom Alter recht gut (R2=0,72); bei konstantem Baumalter und -höhe war sie jedoch mäßig bis niedrig außer für die Jahrringe 1 und 4, wo die Korrelation sehr streng war.



This study was funded by the USDA National Research Initiative Competitive Grants Program Agreement No. 2001-35103-10908. This paper (No. 03-40-1432) is published with the approval of the Director of the Louisiana Agricultural Experiment Station. The authors gratefully acknowledge the contribution of Jim Roberds and Larry Lott, USDA Forest Service, Southern Research Station, Southern Institute of Forest Genetics, Saucier, Mississippi, USA. Bob Megraw, a retired scientist, and Dr. Laurie Schimleck, University of Georgia, are also thanked for their reviews and suggestions.


  1. Bendtsen BA, Senft J (1986) Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cottonwood and loblolly pine. Wood Fiber Sci 18(1):23–28Google Scholar
  2. Cosgrove DJ (1999) Enzymes and other agents that enhance cell wall extensibility. Annu Rev Plant Physiol 50:391–417CrossRefGoogle Scholar
  3. Cown DJ, Young GD, Burdon RD (1992) Variation in wood characteristics of 20-year-old half-sib families of Pinus radiata. New Zeal J For Sci 22(1):63–76Google Scholar
  4. Dadswell HE, Fielding JM, Nicholls WP, Brown AG (1961) Tree-to-tree variations and the gross heritability of wood characteristics of Pinus radiata. Tappi J 44(3):174–179Google Scholar
  5. Hannrup B, Ekberg I (1998) Age–age correlations for tracheid length and wood density in Pinus sylvestris. Can J For Res 28(9):1373–1379CrossRefGoogle Scholar
  6. Hauksson JB, Bergqvist G, Bergqvist G, Bergsten U, Sjöström M, Edlund U (2001) Prediction of basic wood properties for norway spruce. Interpretation of near infrared spectroscopy data using partial least squares. Wood Sci Technol 35(6):475–485CrossRefGoogle Scholar
  7. Jackson LWR, Greene JT (1958) Tracheid length variation and inheritance in slash and loblolly pine. For Sci 4(4):316–318Google Scholar
  8. Koch P (1972) Utilization of the southern pines, The raw material US, vol 1. Department of Agriculture, WashingtonGoogle Scholar
  9. Koubaa A, Hernández RE, Beaudoin M, Poliquin J (1998) Interclonal, intraclonal, and within-tree variation in fiber length of poplar hybrid clones. Wood Fiber Sci 30(1):40–47Google Scholar
  10. Loo JA, Tauer CG, Van Buijtenen JP (1984) Juvenile-mature relationships and heritability estimates of several traits in loblolly pine (Pinus taeda). Can J For Res 14(6):822–825CrossRefGoogle Scholar
  11. Matziris DI, Zobel BJ (1973) Inheritance and correlations of juvenile characteristics in loblolly pine (Pinus taeda L). Silvae Genet 22:38–45Google Scholar
  12. Megraw RA (1985) Wood quality factors in loblolly pine. Tappi Press, AtlantaGoogle Scholar
  13. Miranda I, Pereira H (2002) Variation of pulpwood quality with provenances and site in Eucalyptus globulus. Ann For Sci 59(3):283–291CrossRefGoogle Scholar
  14. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models. MeGraw-Hill, BostonGoogle Scholar
  15. Nicholls JWP, Dadswell HE, Fielding JM (1964) The heritability of wood characteristics of Pinus radiata. Silvae Genet 13:68–71Google Scholar
  16. Ona T, Sonoda T, Ohshima J,Yokota S, Yoshizawa N (2003) A rapid quantitative method to assess Eucalyptus wood properties for kraft pulp production by FT-Raman spectroscopy. J Pulp Pap Sci 29(1):6–10Google Scholar
  17. Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific and Technical, EssexGoogle Scholar
  18. Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H, Hannrup B, Cahalan C, and Plomion C (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait). Ann For Sci 59(5–6):563–575CrossRefGoogle Scholar
  19. Roelofsen RA (1969) The plant cell wall. Gerbrüder Borntraeger, BerlinGoogle Scholar
  20. Shupe TF, Hse CY, Choong ET, Groom LH (1997) Differences in some chemical properties of innerwood and outerwood from five silviculturally different loblolly pine stands. Wood Fiber Sci. 29(1):91–97Google Scholar
  21. Smith WJ (1967) The heritability of fibre characteristics and its application to wood quality improvement in forest trees. Silvae Genet 16:41–50Google Scholar
  22. Statistical Analysis Software (SAS) (2001) Version 8.2. Cary, NC, USAGoogle Scholar
  23. Whiteman PH, Cameron JN, Farrington A (1996) Breeding trees for improved pulp and paper production—a review. Appita J 49(1):50–53Google Scholar
  24. Zobel B, Thorbjornsen E, Henson F (1960) Geographic, site, and individual tree variation in wood properties of loblolly pine. Silvae Genet 9:149–158Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • B. K. Via
    • 1
  • T. F. Shupe
    • 1
    Email author
  • M. Stine
    • 1
  • C. L. So
    • 1
  • L. H. Groom
    • 2
  1. 1.School of Renewable Natural ResourcesLouisiana State University AgCenterBaton RougeUSA
  2. 2.USDA Forest ServiceSouthern Research StationPinevilleUSA

Personalised recommendations