Skip to main content

Advertisement

Log in

Cell wall structure and wood properties determined by acoustics—a selective review

  • Originalarbeit
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

The cell wall of wood tracheids is made up of various layers, distinguished from one other by the alignment of the innumerable, fine crystalline cellulose microfibrils within each layer that helically wind about the cell lumen. Microfibrils themselves are embedded in a more compliant, water-reactive matrix of amorphous lignin and hemicelluloses. The average inclination of microfibrils relative to the axis of the cell affects axial rigidity and dimensional stability of wood which are the two most important properties of wood. High and variable microfibril angles can be found in juvenile and compression wood, thus resulting in variations in product performance of forest products. For instance, seemingly identical trees in a plantation can have moduli of elasticity that differ by a factor of two or more. This is why the future is often seen in engineered wood products, where wood may be chipped, fiberised and blended before being glued together again: the average property values are little changed, but the range—the variability—is greatly reduced. There is the opportunity for better wood allocation and processing of timber, if averaged values for individual log characteristics, such as average microfibril angle, can be identified before the processing. In parallel there is genetic potential to select trees with low average microfibril angles. Unfortunately, determination of the average microfibril angle is a time-consuming, laboratory-based task. Preferably, a non-destructive, simple, field-hardened method should be employed that reflects the average microfibril angle in a given piece of wood. For this reason, acoustic methods have been developed to measure the velocity of sound propagation directly related to the stiffness of wood and in turn is dependent on the ultrastructure of the tracheid cell wall. In the fundamental equation, Edynamic=ρV2, the acoustic modulus is derived from two components, density, ρ, and velocity of sound, V. The latter relates to the intrinsic wood quality and ultrastructure of the tracheid wall. It is shown that acoustic methods can sort and grade trees and logs according to their suitability for structural lumber and for a range of fiber properties of interest to papermakers. Thus, acoustic methods have applications in tree breeding, harvesting, and wood processing.

Zusammenfassung

Die Zellwand von Holztracheiden besteht aus verschiedenen Schichten, die sich von einander durch eine Aneinanderreihung von unzähligen feinen kristallinen Zellulose-Mikrofibrillen in jeder der Schichten unterscheiden, die sich helikal um das Zelllumen winden. Die Mikrofibrillen selbst sind in eine wasser-reaktive Matrix aus amorphem Lignin und Hemizellulosen eingebettet. Der durchschnittliche Neigungswinkel der Mikrofibrillen relativ zur Achse der Zellen beeinflusst die axiale Steifigkeit und die Dimensionsstabilität des Holzes, die beiden wichtigsten technischen Eigenschaften von Holz. Steile und variable Mikrofibrillenwinkel können in juvenilem und Druckholz gefunden werden, wodurch sich Unterschiede in der Verarbeitung von Holzwerkstoffen ergeben. Beispielsweise können scheinbar identische Bäume in einer Plantage Elastizitätsmoduli aufweisen, die sich durch einen Faktor von zwei und mehr unterscheiden. Aus diesem Grund wird die Zukunft oft in technischen Holzprodukten gesehen, wo Holz zerspant, zerfasert und gemischt wird, bevor man es wieder zusammenleimt: die durchschnittlichen Eigenschaften werden wenig verändert, aber die Bandbreite—die Variabilität—wird stark reduziert. Können durchschnittliche Werte für individuelle Holzbalkencharakteristika, wie der Durchschnitts-Mikrofibrillenwinkel vorher bestimmt werden, besteht die Gelegenheit für eine bessere Holzauswahl und -verarbeitung. Parallel dazu gibt es ein genetisches Potential, um Bäume mit niedrigen Durchschnitts-Mikrofibrillenwinkeln zu selektieren. Leider ist die Bestimmung der Durchschnitts-Mikrofibrillenwinkel eine zeitaufwendige, auf das Labor bezogene Aufgabe. Vorzugsweise sollte eine zerstörungsfreie, einfache außen erprobte Methode eingesetzt werden, die den Durchschnitts-Mikrovibrillenwinkel in einem gegebenen Holzstück reflektiert. Aufgrund dessen wurden akustische Methoden entwickelt, um die Geschwindigkeit der Schallausbreitung zu messen, die direkt mit der Festigkeit des Holzes korreliert und damit auch abhängig ist von der Ultrastruktur der Zellwand. In der Grundgleichung, Edynamic=ρV2, wird der akustische Modulus von zwei Komponenten abgeleitet, der Dichte, ρ, und der Schallgeschwindigkeit, V. Letztere bezieht sich auf die intrinsische Holzqualität und die Ultrastruktur der Tracheiden-Wand. Es wird gezeigt, dass die akustische Methode in der Lage ist, Bäume und Rundholz gemäß ihrer Eignung für Bauholz und für eine Bandbreite von Fasereigenschaften, im Interesse der Papierhersteller, zu sortieren und einzuteilen. Auf diese Weise finden akustische Methoden Anwendung bei der Aufzucht von Bäumen, ihrer Abholzung und Verarbeitung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9
Fig. 10 Abb. 10
Fig. 11 Abb. 11
Fig. 12 Abb. 12
Fig. 13 Abb. 13
Fig. 14 Abb. 14
Fig. 15 Abb. 15
Fig. 16 Abb. 16
Fig. 17 Abb. 17
Fig. 18 Abb. 18
Fig. 19 Abb. 19
Fig. 20 Abb. 20
Fig. 21 Abb. 21

Similar content being viewed by others

References

  • Addis T, Buchanan AH, Walker JCF (2000) Selecting trees for structural timber. Holz Roh- Werkstoff 58(3):162–7

  • Albert DJ, Clark TA, Dickson RL, Walker JCF (in press) Using acoustics to sort radiata pine logs according to fibre characteristics and paper properties. Internat For Rev (in press)

  • Andrews M (2000) Where are we with sonics. Wood Technology Research Centre, University of Canterbury, Proc. Workshop 2000, 18th October 2000, pp 57–61

  • Ashby MF, Easterling K, Harrysson R, Maiti SK (1985) The fracture and toughness of wood. Proc Roy Soc A398 261–80

  • Astley J, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. Part 2: the cellular microstructure. Holz Roh-Werkstoff 56(1):43–50

  • Barber NF (1968) A theoretical model of shrinking wood. Holzforschung 22(4):97–103

  • Bamber RK, Burley J (1983) The wood properties of radiata pine. Commonwealth Agriculture Bureau, Slough

  • Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood. Holzforsch 18(5):146–56

  • Beauregard R, Beaudorn M, Fortin Y, Samson M (1992) Evaluating warp from three sawing processes including saw-dry-rip to produce aspen structural lumber. Forest Prod J 42(6):61–4

  • Boyd JD (1972) Tree growth stresses: evidence of an origin in differentiation and lignification. Wood Sci Technol 6(4):251–62

  • Boyd JD (1985) The key factor in growth stress generation in trees lignification or crystallisation? IAWAnat Bull. n.s. 6(2):139–50

  • Bunn EH (1981) The nature of the resource. NZ Journal of Forestry 26(2):162–99

  • Butterfield BG (1998) Microfibril angle in wood. IAWA/IUFRO International Workshop at Westport, New Zealand, November 1997. University of Canterbury, pp 410

  • Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2(4):268–78

  • Cave ID (1969) The longitudinal Young's modulus of Pinus radiata. Wood Sci Technol 3(1):40–8

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: the influence of microfibril angle. Forest Prod J 44(5):43–8

  • Clark TA, Hartmann J, Lausberg M, Walker JCF (in press) Fibre characterisation of pulp logs using acoustics

  • Cockrell RA (1943) Some observations on density and shrinkage of ponderosa pine wood. Transaction of American Society of Mechanical Engineering 65:729–39

  • Cowdrey DR, Preston RD (1966) Elasticity and microfibrillar angle in the wood of sitka spruce. Proc Roy Soc B166 245–72

  • Cown DJ, Young DG, Kimberley MO (1991) Spiral grain patterns in plantation-grown Pinus radiata. NZ J For Sc 21(2/3):206–16

  • Cown DJ, Herbert J, Ball R (1999) Modelling Pinus radiata lumber characteristics. Part 1: mechanical properties of small clears. NZ J For Sc 29(2):203–13

  • Donaldson LA (1993) Variation in microfibril angle among three genetic groups of Pinus radiata trees. NZ J For Sc 23(1):90–100

  • Donaldson LA (1996) Effect of physiological age and site on microfibril angle in Pinus radiata. IAWA J 17(4):421–9

  • Easterling KE, Harrysson R Gibsone LJ, Ashby MF (1982) On the mechanics of balsa and other woods. Proc R Soc A383 31–41

  • Echols RM (1955) Linear relation of fibril angle to tracheid length, and genetic control of tracheid length in slash pine. Tropical Woods 102:11–22

  • Evans R, Kibblewhite RP, Stringer SL (2001) Variation in microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53(5):450–457

  • Fujisawa Y, Ohta S, Tajima M (1993) Wood characteristics and genetic variations in sugi (Cryptomeria japonica) II. Variation in growth ring components among plus trees clones and test stands. Mokuzai Gakkaishi 39(8):875–82

  • Fujisawa Y (1998) Forest tree breeding systems for a forestry based on the concept of quality management considering the production of high level raw materials. Bull For Tree Breed Center (15):31–107

  • Gaby LI (1972) Warping in southern pine studs. USDA Forest Service SE Forest Exp. Stn. Res Paper SE-96

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press (2nd Edition)

  • Gordon JE (1978) Structures: or why things don't fall down. Plenum Press, New York

  • Gordon JE, Jeronimidis G (1974) Work of fracture of natural cellulose. Nature 252(5479):116

  • Gordon JE, Jeronimidis G (1980) Composites with high work of fracture. Phil Trans Roy Soc A294 545–50

  • Harris JM, Meylan BA (1965) The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19(5):144–53

  • Harris P, Andrews M (1999) Tools and acoustic techniques for measuring wood stiffness. 3rd. Wood Quality Symposium: Emerging technologies for wood processing, Rotorua, Melbourne, Forest Ind Eng Assoc, 11 p

  • Haslett AN, Simpson IG, Kimberley MO (1991) Utilization of 25-year-old Pinus radiata. NZ J For Sc 21(2/3):228–34

  • Hirakawa Y, Fujisawa Y (1995) The relationship between microfibril angles of the S2 layer and latewood tracheid lengths in elite sugi tree (Cryptomeria japonica) clones. Mokuzai Gakkaisi 41(2):123–31

  • International Patent (2000) Method for determining warp potential in wood WO 00/12230. World Intellectual Property Organisation, International Bureau, Geneva

  • Jeronimidis G (1976) The fracture of wood in relation to its structure. In Wood structure in biological and technological research (edited Bass P, Bolton AJ, Catling DM), Leiden Botanical Service No. 3, pp 253–265. Leiden University Press, The Hague, Netherlands

  • Jeronimidis G (1980) The fracture behaviour of wood and the relations between toughness and morphology. Proc Roy Soc B208:447–60

  • Kennedy RW (1995) Coniferous wood quality in the future: Concerns and strategies. Wood Sci Technol 29:321–338

  • Khalili S (1999) Microscopical studies of plant fibre structure. Silvestria No. 98, 33 p

  • Lavers GM (1974) The strength properties of timbers. In The strength properties of timber, Building Research Establishment, MTP Construction, p 3–66

  • Lichtenegger H, Reiterer A, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Phil Mag A79(9):2173–84

  • Lindström H, Evans JW, Verrill SP (1998) Influence of cambial age and growth conditions on microfibril angle in young Norway spruce (Picea abies [L.] Karst.). Holzforschung 52(6):573–81

  • Lindström H, P Harris, R Nakada (in press) Methods for measuring stiffness of young trees. Holz Roh- Werkstoff

  • MAFF (1991) Japanese agricultural standard of softwood sawn lumber for wood structure. Notification No.143 of the Ministry of Agriculture, Forestry and Fisheries of January 31, 1991

  • Maeglin RR, Boone RS (1983) An evaluation of saw-dry-rip SDR for the manufacture of studs from small ponderosa pine logs. USDA For Service, NC For Exp Stn NC-140:283–93

  • Marchal M, Jacques D (1999) Évaluation de deux méthodes acoustiques de détermination du module d'élasticitéde bois de mélèze hybride jeune (Larix x eurolepis Henry)—comparaison avec une méthode normalisée en flexion statique. Ann For Sci 56(4):333–343

  • Mattheck C, Kubler H (1995) Wood: the internal optimisation of trees. Springer-Verlag, Berlin, pp 129

  • Megraw RQ, Leaf G, Bremer D (1998) Longitudinal shrinkage and microfibril angle in loblolly pine. In Proc IAWA/IUFRO Workshop on Microfibril angle in wood, Edit. B.G. Butterfield, University of Canterbury, p 27–61

  • Meylan BA (1968) Cause of high longitudinal shrinkage in wood. Forest Prod J 18(4):75–8

  • Meylan BA, Cave ID (1972) A theory of the shrinkage of wood. Wood Sci Technol 6(4):293–301

  • Mosbrugger V (1990) The tree habit in land plants: a functional comparison of trunk constructions with a brief introduction into the biomechanics of trees. Springer-Verlag, Berlin, 161 p

  • NZ Patent (1999) Method of selecting and/or processing wood according to fibre characteristics. NZ Patent 331527

  • Ormarsson S (1999) Numerical analysis of moisture-related distortions in sawn timber. Doctoral Thesis Chalmers University of Technology, Göteborg, Sweden

  • Pers. comm. (2001) Ian Cave, University of Canterbury

  • Preston RD (1934) The organisation of the cell wall of the conifer tracheid. Phil Trans B224 131–74

  • Preston RD (1974) The physical biology of plant cell walls. Chapman, Hall, London SANZ. 1988. NZ 3631 New Zealand timber grading rules. Standards Assoc NZ, Wellington

  • USDA (1999) Wood Handbook: Wood as an engineering material. USDA, Agriculture Handbook No 72. US Govt. Printing Office, Washington D.C., Tables 4-3a & 4-11a

  • US Patent (2000) Log cutting optimization system. US Patent 6,0026,689, 22 Feb 2000

  • Wang X, Ross RJ, Mclellan M, Barbour RJ, Erickson JR, Forsman JW, McGinnis GD (2000) Strength and stiffness assessment of standing trees using a nondestructive stress wave technique. Research paper FPL-RP-585. USDA. Madison, WI

  • Walker JCF, Butterfield BG (1996) The importance of microfibril angle for the processing industries. N.Z. Journal of Forestry 40(4):34–40

  • Walker JCF, Nakada R (1999) Understanding corewood in some softwoods: a selective review. International Forestry Review 1(4):251–9

  • Weatherwax RC, Tarkow H (1968) Density of wood substance: importance of penetration and adsorption compression of the displacement fluid. Forest Prod J 18(7):44–6

  • Xu P, Nakada R, Walker JCF (1999) Optimising your processing: the right wood for the right technology. 3rd. Wood Quality Symposium: Emerging technologies for wood processing, Rotorua, Melbourne, FIEA, pp 12

  • Xu P, Walker JCF (in press) Stiffness Gradients in Radiata Pine Trees. Wood Science & Technology

  • Zobel BJ (1975) Using the wood quality concept in the southern pines. South Pulp Paper Mfr. 38(9):14–6

  • Zobel BJ, van Buijtenen JP (1989) Wood variation: its causes and control. Springer-Verlag, Berlin, pp 15

Download references

Acknowledgements

From School of Forestry, University of Canterbury, Christchurch, New Zealand, we thank Professor John Walker for discussions and comments on the paper. Support from the Swedish Foundation for International Co-operation in Research and Higher Education is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lindström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CL., Lindström, H., Nakada, R. et al. Cell wall structure and wood properties determined by acoustics—a selective review. Holz Roh Werkst 61, 321–335 (2003). https://doi.org/10.1007/s00107-003-0398-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-003-0398-1

Keywords

Navigation