Skip to main content
Log in

Capacity of timber roof trusses considering statistical system effects

  • Original Article
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

For structural timber systems such as trusses, system effects related to strength variation within timber members has a significant effect on reliability. The system effect originates from the reduced probability that weak sections of timber coincide with the most stressed sections in the truss. In this paper, the strength variation within and between timber members is described with a statistical model earlier calibrated against data for Norway Spruce of Scandinavian origin. A method is presented to account for buckling effects when expressing the interaction between axial loading and bending in all sections of the truss members. The interaction is expressed in terms of a combined stress index, CSI, defined so that the failure criterion is CSI=1. For a given truss with given load, the cumulative distribution of CSI can be determined by Monte Carlo simulations based on the statistical model. By comparing the results with corresponding results obtained from deterministic engineering design, the statistical system effect is quantified. It is found that within member variability gives an extra capacity of 12% for Norway Spruce and 24% for Radiata Pine. Design rules proposed for Eurocode accounting for system effects in trusses give results slightly on the safe side compared to the results from the present study.

Zusammenfassung

Für Holzkonstruktionen wie Dachstühle haben Systemeffekte aufgrund von Festigkeitsvariationen innerhalb der Konstruktionsglieder einen erheblichen Einfluss auf die Verlässlichkeit. Der Systemeffekt entsteht aus der geringen Wahrscheinlichkeit, dass schwächere Bereiche des Bauholzes mit den am stärksten belasteten Abschnitten der Konstruktion zusammenfallen. In dieser Arbeit werden die Festigkeitsvariationen innerhalb und zwischen den Gliedern beschrieben mit einem statischen Modell, das zuvor anhand experimenteller Daten von skandinavischem Fichtenholz kalibriert worden war. Es wird eine Methode vorgestellt, um Knickeffekte zu berücksichtigen bei der Berechnung der Wechselwirkung zwischen axialer Belastung und Biegung in allen Abschnitten der Dachstuhlglieder. Die Wechselwirkung wird ausgedrückt in Form eines kombinierten Spannungsindex (CSI) der so definiert ist, dass der CSI bei Bruchbedingungen gleich eins ist (CSI=1). Für eine gegebene Konstruktion mit bekannter Belastung kann der CSI durch Monte-Carlo-Rechnung auf der Grundlage des statistischen Modells bestimmt werden. Die Variabilität innerhalb der Glieder ergibt damit ein erhöhtes Festigkeitspotential von 12% für nordische Fichte und von 24% für Pinus radiata. Die Konstruktionsregeln, die hinsichtlich der Systemeffekte in Dachkonstruktionen für den Eurocode vorgeschlagen wurden, führen zu Ergebnissen, die im Vergleich mit den hier vorgestellten Ergebnissen, leicht auf der sicheren Seite liegen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. Abb. 1.
Fig. 2. Abb. 2.
Fig. 3. Abb. 3.
Fig. 4 Abb. 4.
Fig. 5. Abb. 5.
Fig. 6. Abb. 6.
Fig. 7. Abb. 7.
Fig. 8. Abb. 8.

Similar content being viewed by others

References

  • Adjanohoun G (1997) Reliability based design of timber structures. Workshop, Paris, CTBA Paris

  • Bodig J (ed) (1992) Reliability-based design of engineered wood structures. NATO, ASI Series E—Vol. 215, Kluwer Academic Publ., Dordrecht, The Netherlands

  • Buchanan AH (1984) Strength model and design method for bending and axial load interaction in timber members. Ph.D.-thesis, Dep. of Civ. Eng., University of British Columbia, Vancouver, Canada

  • EN 384 (1995) Structural Timber—Determination of characteristic values of mechanical properties and density

  • Eurocode 5 (1993) Design of timber structures Part 1-1: General rules and rules for buildings. European Committee for Standardization, Bruxelles, Belgium

  • Foschi RO, Folz BR, Yao FZ (1989) Reliability-based design of wood structures. Structural Research Series, Report No. 34, Dep. of Civ. Eng., University of British Colombia, Vancouver, Canada

  • Glos P (1995) Solid timber—Strength classes. Timber Engineering STEP 1, Centrum Hout, The Netherlands

  • Höglund T (1968) Approximativ metod för dimensionering av böjd och tryckt stång. Kungl. Tekniska Högskolan, Stockholm (Swedish)

  • Isaksson T (1998) Length and moment configuration factors. CIB-W18A-Timber structures, Paper 31-6-1. Savolinna, Finland

  • Isaksson T (1999) Modelling the variability of bending strength in structural timber. Length and load configuration effects. Report TVBK-1015, Dep. of Structural Engineering, Lund University

  • Johansson CJ, Boström L, Holmquist H, Hoffmeyer P, Bräuner L (1999) Laminations for glued laminated timber- Establishment of strength classes for visual strength grades and machine settings for glulam laminations of Nordic origin. SP Report 1998:38 Building Technology, Borås

  • Lam F, Varoglu E (1991a) Variation of tensile strength along the length of lumber. Part 1. Experimental. Wood Science and Technology 25:351–360

    Google Scholar 

  • Lam F, Varoglu E (1991b) Variation of tensile strength along the length of lumber. Part 2. Model development and verification. Wood Science and Technology 25:449–458

    Google Scholar 

  • Leicester RH, Beitinger HO, Fordham HF (1996) Equivalence of in-grade testing standards. CIB-W18A-Timber structures. Paper 29-6-2. Bordeaux, France

  • Madsen B (1992) Structural behaviour of timber. Timber engineering LTD, Vancouver Canada

  • Riberholt H (1990a) Analyses of timber trussed rafters of the W-type. CIB-W18A-Timber structures, Paper 23-14-1. Lisbon, Portugal

  • Riberholt H (1990b) Proposal for Eurocode 5 text on timber trussed rafters. CIB-W18A-Timber structures, Paper 23-14-2. Lisbon, Portugal

  • StBK-K2 (1973) kommentarer till Stålbyggnadsnorm 70. Knäckning, vippning och buckling. Statens Stålbyggnadskommitté. Stockholm. Sweden (Swedish)

  • Taylor SE, Bender DA (1991) Stochastic model for localized tensile strength and modulus of elasticity in timber. Wood and Fiber Science 23(4):501–519

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, M., Thelandersson, S. Capacity of timber roof trusses considering statistical system effects. Holz Roh Werkst 61, 161–166 (2003). https://doi.org/10.1007/s00107-003-0373-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-003-0373-x

Keywords

Navigation