Skip to main content
Log in

Scanning laser optical tomography in a neuropathic mouse model

Visualization of structural changes

Scannende laseroptische Tomographie in einem neuropathischen Mausmodell

Visualisierung von strukturellen Veränderungen

  • Original articles
  • Published:
HNO Aims and scope Submit manuscript

Abstract

Background

In the field of hearing research a variety of imaging techniques are available to study molecular and cellular structures of the cochlea. Most of them are based on decalcifying, embedding, and cutting of the cochlea. By means of scanning laser optical tomography (SLOT), the complete cochlea can be visualized without cutting. The Cav1.3−/− mice have already been extensively characterized and show structural changes in the inner ear. Therefore, they were used in this study as a model to investigate whether SLOT can detect structural differences in the murine cochlea.

Materials and methods

Whole undissected cochleae from Cav1.3−/− and wild-type mice of various postnatal stages were immunostained and analyzed by SLOT. The results were compared to cochlea preparations that were immunostained and analyzed by fluorescence microscopy. In addition, cochlea preparations were stained with osmium tetraoxide.

Results

Visualization by SLOT showed that the staining of nerve fibers at P27 in Cav1.3−/− mice was almost absent compared to wild-type mice and earlier timepoints (P9). The analysis of cochlea preparations confirmed a reduction of the radial nerve fibers. In addition, a significantly reduced number of ribbon synapses per inner hair cell (IHC) at P20 and P27 in the apical part of the cochlea of Cav1.3−/− mice was detected.

Conclusion

The visualization of whole non-dissected cochleae by SLOT is a suitable tool for the analysis of gross phenotypic changes, as demonstrated by means of the Cav1.3−/− mouse model. For the analysis of finer structures of the cochlea, however, further methods must be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bellos C, Rigas G, Spiridon IF et al (2014) Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int. https://doi.org/10.1155/2014/485783

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599. https://doi.org/10.1523/JNEUROSCI.21-13-04593.2001

    Article  CAS  PubMed  Google Scholar 

  3. Brandt A, Striessnig J, Moser T (2003) Ca V 1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840. https://doi.org/10.1523/JNEUROSCI.23-34-10832.2003

    Article  CAS  PubMed  Google Scholar 

  4. Coleman B, Rickard NA, de Silva MG, Shepherd RK (2009) A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology. J Neurosci Methods 176:144–151. https://doi.org/10.1016/j.jneumeth.2008.09.007

    Article  PubMed  Google Scholar 

  5. Gillespie LN, Clark GM, Bartlett PF, Marzella PL (2003) BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 71:785–790. https://doi.org/10.1002/jnr.10542

    Article  CAS  PubMed  Google Scholar 

  6. Glueckert R, Wietzorrek G, Kammen-Jolly K et al (2003) Role of class D L‑type Ca2+ channels for cochlear morphology. Hear Res 178:95–105. https://doi.org/10.1016/S0378-5955(03)00054-6

    Article  CAS  PubMed  Google Scholar 

  7. Hardie NA, MacDonald G, Rubel EW (2004) A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Brain Res 1000:200–210. https://doi.org/10.1016/j.brainres.2003.10.071

    Article  CAS  PubMed  Google Scholar 

  8. Kellner M, Heidrich M, Beigel R et al (2012) Imaging of the mouse lung with scanning laser optical tomography (SLOT). J Appl Physiol 113:975–983. https://doi.org/10.1152/japplphysiol.00026.2012

    Article  PubMed  Google Scholar 

  9. Kellner M, Heidrich M, Lorbeer R‑A et al (2016) A combined method for correlative 3D imaging of biological samples from macro to nano scale. Sci Rep 6:35606. https://doi.org/10.1038/srep35606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kobel M, Le Prell CG, Liu J et al (2017) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res 349:148–154. https://doi.org/10.1016/j.heares.2016.12.008

    Article  PubMed  Google Scholar 

  11. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. https://doi.org/10.1006/jsbi.1996.0013

    Article  CAS  PubMed  Google Scholar 

  12. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J Neurosci 29:14077–14085. https://doi.org/10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liberman LD, Liberman MC (2016) Postnatal maturation of auditory-nerve heterogeneity, as seen in spatial gradients of synapse morphology in the inner hair cell area. Hear Res 339:12–22. https://doi.org/10.1016/j.heares.2016.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. MacDonald GH, Rubel EW (2008) Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy. Hear Res 243:1–10. https://doi.org/10.1016/j.heares.2008.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meyer AC, Frank T, Khimich D et al (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453. https://doi.org/10.1038/nn.2293

    Article  CAS  PubMed  Google Scholar 

  16. Nemzou NRM, Bulankina a V, Khimich D et al (2006) Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L‑type Ca2+ channels. Neuroscience 141:1849–1860. https://doi.org/10.1016/j.neuroscience.2006.05.057

    Article  CAS  Google Scholar 

  17. Nolte L, Tinne N, Schulze J et al (2017) Scanning laser optical tomography for in toto imaging of the murine cochlea. PLoS ONE 12:e175431. https://doi.org/10.1371/journal.pone.0175431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oxenham AJ (2016) Predicting the perceptual consequences of hidden hearing loss. Trends Hear 20:233121651668676. https://doi.org/10.1177/2331216516686768

    Article  Google Scholar 

  19. Platzer J, Engel J, Schrott-Fischer A et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L‑type Ca2+ channels. Cell 102:89–97. https://doi.org/10.1016/S0092-8674(00)00013-1

    Article  CAS  PubMed  Google Scholar 

  20. Postnov A, Zarowski A, De Clerck N et al (2006) High resolution micro-CT scanning as an innovatory tool for evaluation of the surgical positioning of cochlear implant electrodes. Acta Otolaryngol 126:467–474. https://doi.org/10.1080/00016480500437377

    Article  CAS  PubMed  Google Scholar 

  21. Poznyakovskiy AA, Zahnert T, Kalaidzidis Y et al (2008) The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res 243:95–104. https://doi.org/10.1016/j.heares.2008.06.008

    Article  PubMed  Google Scholar 

  22. Scheper V, Paasche G, Miller JM et al (2009) Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs. J Neurosci Res 87:1389–1399. https://doi.org/10.1002/jnr.21964

    Article  CAS  PubMed  Google Scholar 

  23. Tinne N, Antonopoulos GC, Mohebbi S et al (2017) Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT). PLoS ONE 12:e184069. https://doi.org/10.1371/journal.pone.0184069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Viana LM, O’Malley JT, Burgess BJ et al (2015) Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. https://doi.org/10.1016/j.heares.2015.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  25. Whitlon DS, Szakaly R, Greiner MA (2001) Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Protoc 6:159–166. https://doi.org/10.1016/S1385-299X(00)00048-9

    Article  CAS  Google Scholar 

  26. Wrzeszcz A, Reuter G, Nolte I et al (2013) Spiral ganglion neuron quantification in the guinea pig cochlea using Confocal Laser Scanning Microscopy compared to embedding methods. Hear Res 306:145–155. https://doi.org/10.1016/j.heares.2013.08.002

    Article  PubMed  Google Scholar 

  27. Yoo SK, Ge Wang G, Rubinstein JT, Vannier MW (2000) Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng 47:1392–1402. https://doi.org/10.1109/10.871413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schulze.

Ethics declarations

Conflict of interest

J. Schulze, L. Nolte, S. Lyutenski, N. Tinne, D. Heinemann, T. Ripken, M. A. Willaredt, H. G. Nothwang, T. Lenarz and A. Warnecke declare that they have no competing interests.

All experiments were carried out in accordance with the European communities Council Directive (2010/63/EU), the German Animal Protection law and approved by local animal care and use committee (LAVES, Oldenburg). All studies performed were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, J., Nolte, L., Lyutenski, S. et al. Scanning laser optical tomography in a neuropathic mouse model. HNO 67 (Suppl 2), 69–76 (2019). https://doi.org/10.1007/s00106-019-0654-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-019-0654-2

Keywords

Navigation