Advertisement

HNO

, Volume 66, Issue 6, pp 464–471 | Cite as

Rolle des angeborenen Immunsystems bei Otitis media

  • M. Wigand
  • T. K. Hoffmann
  • A. F. Ryan
  • B. Wollenberg
  • A. Leichtle
Übersichten
  • 114 Downloads

Zusammenfassung

Die Otitis media (OM) gehört zu den häufigsten Krankheiten im Kindesalter und ist für mehr Arztbesuche, chirurgische Eingriffe und Medikamentenverordnungen verantwortlich als jede andere Infektionskrankheit. Neuesten Forschungsergebnissen zufolge nimmt das angeborene Immunsystem bei der Bekämpfung der Mittelohrentzündung eine entscheidende Rolle ein. Die Mukosa des Mittelohrs identifiziert das eindringende Pathogen, indem sie „pathogenassoziierte molekulare Muster“ (PAMP) über Rezeptoren wie die Toll-like-Rezeptoren (TLR) erkennt. Diese generieren umgehend eine antimikrobielle Immunantwort sowie die Freisetzung von Zytokinen und führen somit zu einer Entzündungsreaktion, wie sie bei der akuten und chronischen OM zu beobachten ist. Durch Interaktion zwischen den verschiedenen TLR kann der Heilungsprozess im Mittelohr sowohl verstärkt als auch gehemmt werden. Um eine Überreaktion auf der einen Seite und eine mangelnde Immunantwort auf der anderen Seite zu verhindern, muss das Signalnetzwerk der Toll-like-Rezeptoren über positive und negative Feedbackschleifen kontrolliert und vernetzt sein. Nur dann kann eine angemessene Immunantwort auf die Infektion im Mittelohr garantiert werden. In der vorliegenden Literaturübersicht liegt das Augenmerk auf der Rolle des angeborenen Immunsystems und der TLR sowie deren Bedeutung bei der Entwicklung von neuen Impfstrategien bzw. Immuntherapien.

Schlüsselwörter

Mittelohr Infektion Zytokine Toll-like-Rezeptoren Immunologie 

The role of innate immunity in otitis media

Abstract

Otitis media (OM) belongs to the most common pediatric diseases and causes more medical contacts, surgical interventions, and drug prescriptions than any other infectious disease. Recent findings have identified a critical role of innate immunity in recovery from OM. The middle ear mucosa identifies invading pathogens by sensing pathogen-associated molecule patterns (PAMPs) via pattern recognition receptors such as the Toll-like receptors (TLRs). They generate immediate antimicrobial responses and cytokine release, leading to an inflammatory reaction as seen in acute or chronic OM. Cross-talk between TLRs can enhance or suppress the healing process in the middle ear. In order to prevent over-activation on the one hand and insufficient immune response on the other, the signaling network between different TLRs must be integrated and controlled by positive and negative feedback loops. This guarantees a proper immune response in the middle ear after infection. In this review, we focus on the involvement of the innate immune system and TLRs in OM, as well on their relevance for new vaccination strategies and immunotherapies.

Keywords

Middle ear Infection Cytokines Toll-like receptors Immunology 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Wigand, T.K. Hoffmann, A. F. Ryan, B. Wollenberg und A. Leichtle geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511CrossRefPubMedGoogle Scholar
  2. 2.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680CrossRefPubMedGoogle Scholar
  3. 3.
    Allen EK, Manichaikul A, Sale MM (2014) Genetic contributors to otitis media: agnostic discovery approaches. Curr Allergy Asthma Rep 14:411CrossRefPubMedGoogle Scholar
  4. 4.
    Casey JR, Pichichero ME (2004) Changes in frequency and pathogens causing acute otitis media in 1995–2003. Pediatr Infect Dis J 23:824–828CrossRefPubMedGoogle Scholar
  5. 5.
    Chen R, Lim JH, Jono H et al (2004) Nontypeable Haemophilus influenzae lipoprotein P6 induces MUC5AC mucin transcription via TLR2-TAK1-dependent p38 MAPK-AP1 and IKKbeta-IkappaBalpha-NF-kappaB signaling pathways. Biochem Biophys Res Commun 324:1087–1094CrossRefPubMedGoogle Scholar
  6. 6.
    Corbeel L (2007) What is new in otitis media? Eur J Pediatr 166:511–519CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Demaria TF, Apicella MA, Nichols WA et al (1997) Evaluation of the virulence of nontypeable Haemophilus influenzae lipooligosaccharide htrB and rfaD mutants in the chinchilla model of otitis media. Infect Immun 65:4431–4435PubMedPubMedCentralGoogle Scholar
  8. 8.
    Forgie S, Zhanel G, Robinson J (2009) Management of acute otitis media. Paediatr Child Health 14:457–464CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gorski KS, Waller EL, Bjornton-Severson J et al (2006) Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int Immunol 18:1115–1126CrossRefPubMedGoogle Scholar
  10. 10.
    Hernandez M, Leichtle A, Pak K et al (2008) Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis 198:1862–1869CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hirano T, Kodama S, Fujita K et al (2007) Role of Toll-like receptor 4 in innate immune responses in a mouse model of acute otitis media. FEMS Immunol Med Microbiol 49:75–83CrossRefPubMedGoogle Scholar
  12. 12.
    Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38CrossRefPubMedGoogle Scholar
  13. 13.
    Hoshino K, Takeuchi O, Kawai T et al (1999) Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752PubMedGoogle Scholar
  14. 14.
    Ichinohe T, Watanabe I, Ito S et al (2005) Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. J Virol 79:2910–2919CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Johnston LC, Feldman HM, Paradise JL et al (2004) Tympanic membrane abnormalities and hearing levels at the ages of 5 and 6 years in relation to persistent otitis media and tympanostomy tube insertion in the first 3 years of life: a prospective study incorporating a randomized clinical trial. Pediatrics 114:e58–e67CrossRefPubMedGoogle Scholar
  16. 16.
    Kasturi SP, Skountzou I, Albrecht RA et al (2011) Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470:543–547CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kaur R, Casey J, Pichichero M (2015) Cytokine, chemokine, and Toll-like receptor expression in middle ear fluids of children with acute otitis media. Laryngoscope 125:E39–E44CrossRefPubMedGoogle Scholar
  18. 18.
    Kawai T, Akira S (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ku CL, Von Bernuth H, Picard C et al (2007) Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J Exp Med 204:2407–2422CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kurabi A, Pak K, Ryan AF et al (2016) Innate immunity: orchestrating inflammation and resolution of Otitis Media. Curr Allergy Asthma Rep 16:6CrossRefPubMedGoogle Scholar
  21. 21.
    Lee HY, Chung JH, Lee SK et al (2013) Toll-like receptors, cytokines & nitric oxide synthase in patients with otitis media with effusion. Indian J Med Res 138:523–530PubMedPubMedCentralGoogle Scholar
  22. 22.
    Leibovitz E (2006) Acute otitis media in children aged less than 2 years: drug treatment issues. Paediatr Drugs 8:337–346CrossRefPubMedGoogle Scholar
  23. 23.
    Leibovitz E (2007) The challenge of recalcitrant acute otitis media: pathogens, resistance, and treatment strategy. Pediatr Infect Dis J 26:S8–S11CrossRefPubMedGoogle Scholar
  24. 24.
    Leibovitz E, Jacobs MR, Dagan R (2004) Haemophilus influenzae: a significant pathogen in acute otitis media. Pediatr Infect Dis J 23:1142–1152PubMedGoogle Scholar
  25. 25.
    Leichtle A, Hernandez M, Ebmeyer J et al (2010) CC chemokine ligand 3 overcomes the bacteriocidal and phagocytic defect of macrophages and hastens recovery from experimental otitis media in TNF-/-mice. J Immunol 184:3087–3097CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leichtle A, Hernandez M, Lee J et al (2012) The role of DNA sensing and innate immune receptor TLR9 in otitis media. Innate Immun 18:3–13CrossRefPubMedGoogle Scholar
  27. 27.
    Leichtle A, Hernandez M, Pak K et al (2009) The toll-Like receptor adaptor TRIF contributes to otitis media pathogenesis and recovery. BMC Immunol 10:45CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leichtle A, Hernandez M, Pak K et al (2009) TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun 15:205–215CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lemaitre B, Nicolas E, Michaut L et al (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983CrossRefPubMedGoogle Scholar
  30. 30.
    Lorenz E, Mira JP, Frees KL et al (2002) Relevance of mutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032CrossRefPubMedGoogle Scholar
  31. 31.
    Macarthur CJ, Hefeneider SH, Kempton JB et al (2006) C3H/HeJ mouse model for spontaneous chronic otitis media. Laryngoscope 116:1071–1079CrossRefPubMedGoogle Scholar
  32. 32.
    Maisonneuve C, Bertholet S, Philpott DJ et al (2014) Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci U S A 111:12294–12299CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mandel EM, Casselbrant ML (2004) Antibiotics for otitis media with effusion. Minerva Pediatr 56:481–495PubMedGoogle Scholar
  34. 34.
    Medzhitov R, Janeway C Jr. (2000) The Toll receptor family and microbial recognition. Trends Microbiol 8:452–456CrossRefPubMedGoogle Scholar
  35. 35.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397CrossRefPubMedGoogle Scholar
  36. 36.
    Medzhitov R, Preston-Hurlburt P, Kopp E et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258CrossRefPubMedGoogle Scholar
  37. 37.
    Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273 (Table of Contents)CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murphy TF (2005) Vaccine development for non-typeable Haemophilus influenzae and Moraxella catarrhalis: progress and challenges. Expert Rev Vaccines 4:843–853CrossRefPubMedGoogle Scholar
  39. 39.
    Napolitani G, Rinaldi A, Bertoni F et al (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1‑polarizing program in dendritic cells. Nat Immunol 6:769–776CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    O’Brien MA, Prosser LA, Paradise JL et al (2009) New vaccines against otitis media: projected benefits and cost-effectiveness. Pediatrics 123:1452–1463CrossRefPubMedGoogle Scholar
  41. 41.
    Ogus AC, Yoldas B, Ozdemir T et al (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23:219–223CrossRefPubMedGoogle Scholar
  42. 42.
    Pelton SI (2002) Acute otitis media in an era of increasing antimicrobial resistance and universal administration of pneumococcal conjugate vaccine. Pediatr Infect Dis J 21:599–604 (discussion 613–594)CrossRefPubMedGoogle Scholar
  43. 43.
    Poehling KA, Szilagyi PG, Grijalva CG et al (2007) Reduction of frequent otitis media and pressure-equalizing tube insertions in children after introduction of pneumococcal conjugate vaccine. Pediatrics 119:707–715CrossRefPubMedGoogle Scholar
  44. 44.
    Poltorak A, He X, Smirnova I et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088CrossRefPubMedGoogle Scholar
  45. 45.
    Pulendran B, Ahmed R (2006) Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849–863CrossRefPubMedGoogle Scholar
  46. 46.
    Qiao H, Andrade MV, Lisboa FA et al (2006) FcepsilonR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 107:610–618CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rye MS, Bhutta MF, Cheeseman MT et al (2011) Unraveling the genetics of otitis media: from mouse to human and back again. Mamm Genome 22:66–82CrossRefPubMedGoogle Scholar
  48. 48.
    Sato S, Nomura F, Kawai T et al (2000) Synergy and cross-tolerance between toll-like receptor (TLR) 2‑ and TLR4-mediated signaling pathways. J Immunol 165:7096–7101CrossRefPubMedGoogle Scholar
  49. 49.
    Shuto T, Xu H, Wang B et al (2001) Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2‑TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A 98:8774–8779CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Si Y, Zhang ZG, Chen SJ et al (2014) Attenuated TLRs in middle ear mucosa contributes to susceptibility of chronic suppurative otitis media. Hum Immunol 75:771–776CrossRefPubMedGoogle Scholar
  51. 51.
    Smirnova I, Mann N, Dols A et al (2003) Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci U S A 100:6075–6080CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Straetemans M, Sanders EA, Veenhoven RH et al (2004) Pneumococcal vaccines for preventing otitis media. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001480.pub2 PubMedCrossRefGoogle Scholar
  53. 53.
    Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376CrossRefPubMedGoogle Scholar
  54. 54.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefPubMedGoogle Scholar
  55. 55.
    Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7:179–190CrossRefPubMedGoogle Scholar
  56. 56.
    Underhill DM, Ozinsky A (2002) Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 14:103–110CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang SY, Jouanguy E, Ugolini S et al (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. Wigand
    • 1
  • T. K. Hoffmann
    • 1
  • A. F. Ryan
    • 2
  • B. Wollenberg
    • 3
  • A. Leichtle
    • 1
  1. 1.Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf und HalschirurgieUniversitätsklinik UlmUlmDeutschland
  2. 2.Dept. of OtolaryngologyUniversity of California San Diego, (UCSD)San DiegoUSA
  3. 3.Klinik für Hals‑, Nasen‑, OhrenheilkundeUniversitätsklinikum Schleswig HolsteinLübeckDeutschland

Personalised recommendations