HNO

, Volume 66, Issue 4, pp 258–264 | Cite as

Lärminduzierte Neurodegeneration der zentralen Hörbahn

Eine Übersicht experimenteller Untersuchungen im Mausmodell
Leitthema
  • 91 Downloads

Zusammenfassung

Hintergrund

Ein Lärmtrauma induziert zentralnervöse Pathologien, die zur Generierung von Hör- und Wahrnehmungsstörungen führen.

Fragestellung

Sind degenerative Prozesse in der zentralen Hörbahn eine direkte Auswirkung der Überstimulation oder eine Folge akustischer Deprivation?

Material und Methode

Bestimmung von Zelltodmechanismen im Mausmodell eines lärminduzierten Hörverlusts zu verschiedenen Zeitpunkten nach einfacher oder wiederholter Lärmexposition.

Ergebnisse

Eine einmalige Lärmexposition (3 h, 115 dB SPL, 5–20 kHz) induziert akute (≤1 Tag) und längerfristige (Beobachtungszeitraum 14 Tage) Degeneration insbesondere in subkortikalen Strukturen. Nach einem wiederholten Lärmtrauma treten v. a. pathologische Veränderungen im auditorischen Thalamus und Kortex auf.

Schlussfolgerung

Lärm hat direkte Auswirkungen auf basale Strukturen der zentralen Hörbahn, eine Protektion kortikaler Areale erfolgt möglicherweise aufgrund inhibitorischer neuronaler Projektionen. Degenerative Mechanismen in höheren Strukturen des vorgeschädigten Systems deuten auf eine zunehmende Beeinträchtigung komplexer Verarbeitung akustischer Informationen.

Schlüsselwörter

Lärmbedingter Hörverlust Zentralnervensystem Hörstörungen, zentrale Auditorischer Kortex Thalamus 

Noise-induced neurodegeneration in the central auditory pathway

An overview of experimental studies in a mouse model

Abstract

Background

A noise trauma induces central nervous system pathologies, which generate deficits in hearing and perception of sound.

Objective

Are degenerative mechanisms in the central auditory system a direct impact of overstimulation or an effect of acoustic deprivation?

Materials and methods

Detection of cell death in a mouse model of noise-induced hearing loss at different times after single or repeated noise exposure.

Results

A single noise exposure (3 h, 115 dB SPL, 5–20 kHz) induces acute (≤1 day) and long-term (observation period 14 days) degeneration, particularly in subcortical structures. Repeated noise trauma is followed by pathologies in the auditory thalamus and cortex.

Conclusion

Noise has a direct impact on basal structures of the central auditory system; a protection of cortical areas is possibly due to inhibitory neuronal projections. Degenerative mechanisms in higher structures of the pre-damaged system point to an increased impairment of complex processing of acoustic information.

Keywords

Noise-induced hearing loss Central nervous system Auditory disease, central Auditory cortex Thalamus 

Notes

Danksagung

Gefördert durch die Deutsche Forschungsgemeinschaft DFG (GR 3519/3-1).

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Gröschel, A. Ernst und D. Basta geben an, dass kein Interessenkonflikt besteht.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Literatur

  1. 1.
    Aarnisalo AA, Pirvola U, Liang XQ et al (2000) Apoptosis in auditory brainstem neurons after a severe noise trauma of the organ of corti: intracochlear GDNF treatment reduces the number of apoptotic cells. ORL J Otorhinolaryngol Relat Spec 62:330–334CrossRefPubMedGoogle Scholar
  2. 2.
    Basta D, Ernst A (2005) Erratum to “Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices”. Neurosci Lett 374:74–79CrossRefPubMedGoogle Scholar
  3. 3.
    Basta D, Tzschentke B, Ernst A (2005) Noise-induced cell death in the mouse medial geniculate body and primary auditory cortex. Neurosci Lett 381:199–204CrossRefPubMedGoogle Scholar
  4. 4.
    Bauer CA, Turner JG, Caspary DM et al (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Caspary DM, Llano DA (2017) Auditory thalamic circuits and GABAA receptor function: putative mechanisms in tinnitus pathology. Hear Res 349:197–207CrossRefPubMedGoogle Scholar
  6. 6.
    Coordes A, Gröschel M, Ernst A et al (2012) Apoptotic cascades in the central auditory pathway after noise exposure. J Neurotrauma 29:1249–1254CrossRefPubMedGoogle Scholar
  7. 7.
    Eggermont JJ (2017) Acquired hearing loss and brain plasticity. Hear Res 343:176–190CrossRefPubMedGoogle Scholar
  8. 8.
    Fröhlich F, Basta D, Strübing I et al (2017) Time course of cell death due to acoustic overstimulation in the mouse medial geniculate body and primary auditory cortex. Noise Health 19:133–139CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fröhlich F, Ernst A, Strübing I et al (2017) Apoptotic mechanisms after repeated noise trauma in the mouse medial geniculate body and primary auditory cortex. Exp Brain Res 235:3673–3682CrossRefPubMedGoogle Scholar
  10. 10.
    Gröschel M, Götze R, Ernst A et al (2010) Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. J Neurotrauma 27:1499–1507CrossRefPubMedGoogle Scholar
  11. 11.
    Gröschel M, Müller S, Götze R et al (2011) The possible impact of noise-induced Ca2+-dependent activity in the central auditory pathway: a manganese-enhanced MRI study. Neuroimage 57:190–197CrossRefPubMedGoogle Scholar
  12. 12.
    Gröschel M, Ryll J, Götze R et al (2014) Acute and long-term effects of noise exposure on the neuronal spontaneous activity in cochlear nucleus and inferior colliculus brain slices. Biomed Res Int 2014:909260CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    House JW, Brackmann DE (1981) Tinnitus: surgical treatment. Ciba Found Symp 85:204–216PubMedGoogle Scholar
  14. 14.
    Husain FT, Medina RE, Davis CW et al (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88CrossRefPubMedGoogle Scholar
  15. 15.
    Ito T, Bishop DC, Oliver DL (2015) Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 91:22–34CrossRefGoogle Scholar
  16. 16.
    Kaltenbach JA (2011) Tinnitus: models and mechanisms. Hear Res 276:52–60CrossRefPubMedGoogle Scholar
  17. 17.
    Kaltenbach JA, Godfrey DA, Neumann JB et al (1998) Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res 124:78–84CrossRefPubMedGoogle Scholar
  18. 18.
    Kamke MR, Brown M, Irvine DR (2003) Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. J Comp Neurol 459:355–367CrossRefPubMedGoogle Scholar
  19. 19.
    Kandler K (2004) Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Curr Opin Neurobiol 14:96–104CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JJ, Gross J, Potashner SJ et al (2004) Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: chronic degeneration and new growth of synaptic endings. J Neurosci Res 77:817–828CrossRefPubMedGoogle Scholar
  21. 21.
    Meltser I, Canlon B (2010) The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiol Dis 40:325–330CrossRefPubMedGoogle Scholar
  22. 22.
    Meltser I, Tahera Y, Canlon B (2010) Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 165:1439–1446CrossRefPubMedGoogle Scholar
  23. 23.
    Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164:733–746CrossRefPubMedGoogle Scholar
  24. 24.
    Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153CrossRefPubMedGoogle Scholar
  25. 25.
    Ologe FE, Olajide TG, Nwawolo CC et al (2008) Deterioration of noise-induced hearing loss among bottling factory workers. J Laryngol Otol 122:786–794CrossRefPubMedGoogle Scholar
  26. 26.
    Salvi RJ, Saunders SS, Gratton MA et al (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50:245–257CrossRefPubMedGoogle Scholar
  27. 27.
    Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38CrossRefPubMedGoogle Scholar
  28. 28.
    Sekiya T, Canlon B, Viberg A et al (2009) Selective vulnerability of adult cochlear nucleus neurons to de-afferentation by mechanical compression. Exp Neurol 218:117–123CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Y, Manis PB (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of held synapse in mice. J Neurophysiol 100:1255–1264CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    WHO (2015) World health organization department for management of nuncommunicable diseases – 1.1 billion people at risk of hearing loss. http://www.who.int/mediacentre/news/releases/2015/ear-care/en/. Zugegriffen: 12. Dez 2016Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Hals‑, Nasen‑, OhrenheilkundeBG Klinikum Unfallkrankenhaus Berlin gGmbHBerlinDeutschland

Personalised recommendations