Advertisement

HNO

, Volume 66, Issue 4, pp 280–289 | Cite as

Dreidimensionale Analyse nasaler Physiologie

Darstellung mit numerischen Simulationen
  • F. Sommer
  • T. K. Hoffmann
  • G. Mlynski
  • M. Reichert
  • A.-S. Grossi
  • R. Kröger
  • J. Lindemann
Leitthema
  • 164 Downloads

Zusammenfassung

Die menschliche Nase übernimmt einen großen Teil der Präkonditionierung eingeatmeter Luft. Zahlreiche pathologische Veränderungen können die Physiologie der Nase beeinträchtigen. Die Anfänge der Strömungsanalysen wurden mit dreidimensionalen Abgussmodellen und farbig markierten Flüssigkeiten durchgeführt. Temperatur und Feuchtigkeit konnten hierbei nicht berücksichtigt werden. Heute sind wesentlich komplexere Analysen mittels „computational fluid dynamics“ (CFD) möglich, die auf dreidimensionalen Modellen basieren, welche aus Datensätzen der Computertomographie (CT) oder Magnetresonanztomographie (MRT) erstellt werden. Hierbei können Strömungsgeschwindigkeiten, Temperatur, Feuchtigkeit und Druckdifferenzen in Abhängigkeit von multiplen Randbedingungen simuliert und hochauflösend dargestellt werden. Die Analyse pathologischer Veränderungen oder operativer Eingriffen ist dadurch möglich.

Schlüsselwörter

Diagnostische Verfahren Oberer Respirationstrakt Nasale Physiologie Computational Fluid Dynamics Numerische Simulationen 

Three-dimensional analysis of nasal physiology

Representation by means of computational fluid dynamics

Abstract

The human nose takes primary responsibility for preconditioning inhaled air. Numerous pathologies can affect the physiology of the nose. The beginnings of flow analyzes were carried out with three-dimensional casting models and differently colored liquids. Temperature and humidity could not be taken into account. Today, much more complex analyzes are possible using computational fluid dynamics (CFD), which are based on three-dimensional models generated from computed tomography (CT) or magnetic resonance imaging (MRI) datasets. Here, flow velocities, temperature, humidity, and pressure differences can be simulated and displayed in high-resolution videos as a function of multiple boundary conditions. The analysis of pathological changes or surgical interventions is thereby possible.

Keywords

Diagnostic techniques Upper respiratory tract Nasal physiology Computational fluid dynamics Numerical simulations 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Sommer, T.K. Hoffmann, G. Mlynski, M. Reichert, A.-S. Grossi und J. Lindemann geben an, dass kein Interessenkonflikt besteht. Die Projekte, welche in der Publikation beschrieben sind, wurden im Rahmen einer wissenschaftlichen Kooperation durch Herrn Dr. Ralf Kröger, Mitarbeiter der Firma ANSYS Germany, Darmstadt, unterstützt. Im Rahmen dieser Kooperation sollte untersucht werden, inwieweit der klinische Einsatz der Software „Fluent (ANSYS Workbench)“ im HNO-Bereich möglich ist und in welcher Form er für den Einsatz in der klinischen Routine vereinfacht werden kann. Die Lizenz der genannten Software war bereits vor Projektbeginn an der Universität Ulm existent. Im Rahmen dieser Kooperation bestehen keine finanziellen Interessenskonflikte.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Mlynski G, Grützenmacher S, Mlynski B, Koch B (1993) Modelluntersuchungen zur Nasenmuschelchirurgie. Laryngorhinootologie 72(12):614–617.  https://doi.org/10.1055/s-2007-997966 CrossRefPubMedGoogle Scholar
  2. 2.
    Di Martino E, Mlynski G, Mlynski B (1998) Einfluß der Adenoidhyperplasie auf die nasale Atemströmung. Laryngorhinootologie 77(5):272–274.  https://doi.org/10.1055/s-2007-996973 CrossRefPubMedGoogle Scholar
  3. 3.
    Lindemann J, Tsakiropoulou E, Keck T, Leiacker R, Wiesmiller KM (2009) Nasal air conditioning in relation to acoustic rhinometry values. Am J Rhinol Allergy 23(6):575–577.  https://doi.org/10.2500/ajra.2009.23.3362 CrossRefPubMedGoogle Scholar
  4. 4.
    Wiesmiller K, Keck T, Leiacker R, Lindemann J (2007) Simultaneous in vivo measurements of intranasal air and mucosal temperature. Eur Arch Otorhinolaryngol 264(6):615–619CrossRefPubMedGoogle Scholar
  5. 5.
    Lindemann J, Sannwald D, Wiesmiller K (2008) Age-related changes in intranasal air conditioning in the elderly. Laryngoscope 118(8):1472–1475.  https://doi.org/10.1097/MLG.0b013e3181758174 CrossRefPubMedGoogle Scholar
  6. 6.
    Lindemann J, Leiacker R, Stehmer V, Rettinger G, Keck T (2001) Intranasal temperature and humidity profile in patients with nasal septal perforation before and after surgical closure. Clin Otolaryngol Allied Sci 26(5):433–437 (http://www.ncbi.nlm.nih.gov/pubmed/11678954)CrossRefPubMedGoogle Scholar
  7. 7.
    Lindemann J, Leiacker R, Rettinger G, Keck T (2002) Nasal mucosal temperature during respiration. Clin Otolaryngol Allied Sci 27(3):135–139CrossRefPubMedGoogle Scholar
  8. 8.
    Lindemann J, Kuhnemann S, Stehmer V, Leiacker R, Rettinger G, Keck T (2001) Temperature and humidity profile of the anterior nasal airways of patients with nasal septal perforation. Rhinology 39(4):202–206PubMedGoogle Scholar
  9. 9.
    Lindemann J, Leiacker R, Rettinger G, Keck T (2003) The relationship between water vapour saturation of inhaled air and nasal patency. Eur Respir J 21(2):313–316CrossRefPubMedGoogle Scholar
  10. 10.
    Lindemann J, Leiacker R, Sikora T, Rettinger G, Keck T (2002) Impact of unilateral sinus surgery with resection of the turbinates by means of midfacial degloving on nasal air conditioning. Laryngoscope 112(11):2062–2066CrossRefPubMedGoogle Scholar
  11. 11.
    Lindemann J, Sannwald D, Wiesmiller K (2008) Age-related changes in intranasal air conditioning in the elderly. Laryngoscope 118(8):1472–1475CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao K (2004) Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem Senses 29(5):365–379.  https://doi.org/10.1093/chemse/bjh033 CrossRefPubMedGoogle Scholar
  13. 13.
    Weinhold I, Mlynski G (2004) Numerical simulation of airflow in the human nose. Eur Arch Otorhinolaryngol 261(8):452–455.  https://doi.org/10.1007/s00405-003-0675-y CrossRefPubMedGoogle Scholar
  14. 14.
    Tarabichi M, Fanous N (1993) Finite element analysis of airflow in the nasal valve. Arch Otolaryngol Head Neck Surg 119(6):638–642. http://www.ncbi.nlm.nih.gov/pubmed/8499094. Zugegriffen: 11.04.2015CrossRefPubMedGoogle Scholar
  15. 15.
    Müller-Wittig W, Mlynsji G, Weinhold I, Bockholt U, Voss G (2002) Nasal airflow diagnosis–comparison of experimental studies and computer simulations. Stud Health Technol Inform 85:311–317. http://www.ncbi.nlm.nih.gov/pubmed/15458107. Zugegriffen: 11.04.2015PubMedGoogle Scholar
  16. 16.
    Keyhani K, Scherer PW, Mozell MM (1995) Numerical simulation of airflow in the human nasal cavity. J Biomech Eng 117(4):429–441CrossRefPubMedGoogle Scholar
  17. 17.
    Grant O, Bailie N, Watterson J, Cole J, Gallagher G, Hanna B (2004) Numerical model of a nasal septal perforation. Stud Health Technol Inform 107(Pt 2):1352–1356. http://www.ncbi.nlm.nih.gov/pubmed/15361035. Zugegriffen: 11.04.2015PubMedGoogle Scholar
  18. 18.
    Elad D, Liebenthal R, Wenig BL, Einav S (1993) Analysis of air flow patterns in the human nose. Med Biol Eng Comput 31(6):585–592CrossRefPubMedGoogle Scholar
  19. 19.
    Bockholt U, Mlynski G, Muller W, Voss G (2000) Rhinosurgical therapy planning via endonasal airflow simulation. Comput Aided Surg 5(3):175–179CrossRefPubMedGoogle Scholar
  20. 20.
    Martonen TB, Quan L, Zhang Z, Musante CJ (2002) Flow simulation in the human upper respiratory tract. Cell Biochem Biophys 37(1):27–36CrossRefPubMedGoogle Scholar
  21. 21.
    Martonen TB, Zhang Z, Yu G, Musante CJ (2001) Three-dimensional computer modeling of the human upper respiratory tract. Cell Biochem Biophys 35(3):255–261.  https://doi.org/10.1385/CBB:35:3:255 CrossRefPubMedGoogle Scholar
  22. 22.
    Hegedus CJ, Balásházy I, Farkas A (2004) Detailed mathematical description of the geometry of airway bifurcations. Respir Physiol Neurobiol 141(1):99–114.  https://doi.org/10.1016/j.resp.2004.03.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Calay RK, Kurujareon J, Holdo AE (2002) Numerical simulation of respiratory flow patterns within human lung. Respir Physiol Neurobiol 130(2):201–221CrossRefPubMedGoogle Scholar
  24. 24.
    Balásházy I, Farkas A, Szöke I, Hofmann W, Sturm R (2003) Simulation of deposition and clearance of inhaled particles in central human airways. Radiat Prot Dosimetry 105(1–4):129–132. http://www.ncbi.nlm.nih.gov/pubmed/14526942. Zugegriffen: 11.04.2015CrossRefPubMedGoogle Scholar
  25. 25.
    Nowak N, Kakade PP, Annapragada AV (2003) Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng 31(4):374–390. http://www.ncbi.nlm.nih.gov/pubmed/12723679. Zugegriffen: 11.04.2015CrossRefPubMedGoogle Scholar
  26. 26.
    Grützenmacher S, Lang C, Mlynski G (2003) The combination of acoustic rhinometry, rhinoresistometry and flow simulation in noses before and after turbinate surgery: a model study. ORL J Otorhinolaryngol Relat Spec 65(6):341–347CrossRefPubMedGoogle Scholar
  27. 27.
    Lindemann J, Brambs HJ, Keck T, Wiesmiller KM, Rettinger G, Pless D (2005) Numerical simulation of intranasal airflow after radical sinus surgery. Am J Otolaryngol 26(3):175–180CrossRefPubMedGoogle Scholar
  28. 28.
    Lindemann J, Keck T, Wiesmiller KM, Rettinger G, Brambs HJ, Pless D (2005) Numerical simulation of intranasal air flow and temperature after resection of the turbinates. Rhinology 43(1):24–28PubMedGoogle Scholar
  29. 29.
    Lindemann J, Keck T, Wiesmiller K et al (2004) A numerical simulation of intranasal air temperature during inspiration. Laryngoscope 114(6):1037–1041CrossRefPubMedGoogle Scholar
  30. 30.
    Lindemann J, Keck T, Wiesmiller K et al (2006) Nasal air temperature and airflow during respiration in numerical simulation based on multislice computed tomography scan. Am J Rhinol 20(2):219–223PubMedGoogle Scholar
  31. 31.
    Pless D, Keck T, Wiesmiller KM, Lamche R, Aschoff AJ, Lindemann J (2004) Numerical simulation of airflow patterns and air temperature distribution during inspiration in a nose model with septal perforation. Am J Rhinol 18(6):357–362PubMedGoogle Scholar
  32. 32.
    Pless D, Keck T, Wiesmiller K et al (2004) Numerical simulation of air temperature and airflow patterns in the human nose during expiration. Clin Otolaryngol Allied Sci 29(6):642–647CrossRefPubMedGoogle Scholar
  33. 33.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128.  https://doi.org/10.1016/j.neuroimage.2006.01.015 CrossRefPubMedGoogle Scholar
  34. 34.
    Sommer F, Scheithauer M, Kröger R, Rettinger G, Lindemann J (2014) Niesen als mechanische Abwehr – Numerische Simulation mit Analyse der durchströmten Nasenbereiche. Laryngorhinootologie 93(11):746–750.  https://doi.org/10.1055/s-0034-1385862 CrossRefPubMedGoogle Scholar
  35. 35.
    Tang JW, Nicolle AD, Klettner CA et al (2013) Airflow dynamics of human jets: sneezing and breathing – potential sources of infectious aerosols. PLoS ONE 8(4):e59970.  https://doi.org/10.1371/journal.pone.0059970 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang JW, Nicolle A, Pantelic J et al (2012) Airflow dynamics of coughing in healthy human volunteers by shadowgraph imaging: an aid to aerosol infection control. PLoS ONE 7(4):e34818.  https://doi.org/10.1371/journal.pone.0034818 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hol MK, Huizing EH (2000) Treatment of inferior turbinate pathology: a review and critical evaluation of the different techniques. Rhinology 38(4):157–166. http://www.ncbi.nlm.nih.gov/pubmed/11190749. Zugegriffen: 27.04.2015PubMedGoogle Scholar
  38. 38.
    Scheithauer MO (2010) Surgery of the turbinates and “empty nose” syndrome. GMS Curr Top Otorhinolaryngol Head Neck Surg 9:Doc3.  https://doi.org/10.3205/cto000067 PubMedGoogle Scholar
  39. 39.
    Clement WA, White PS (2001) Trends in turbinate surgery literature: a 35-year review. Clin Otolaryngol Allied Sci 26(2):124–128. http://www.ncbi.nlm.nih.gov/pubmed/11309053. Zugegriffen: 27.04.2015CrossRefPubMedGoogle Scholar
  40. 40.
    Lindemann J, Rettinger G, Kröger R, Sommer F (2013) Numerical simulation of airflow patterns in nose models with differently localized septal perforations. Laryngoscope 123(9):2085–2089.  https://doi.org/10.1002/lary.23653 CrossRefPubMedGoogle Scholar
  41. 41.
    Grutzenmacher S, Lang C, Saadi R, Mlynski G (2002) First findings about the nasal airflow in noses with septal perforation. Laryngorhinootologie 81(4):276–279.  https://doi.org/10.1055/s-2002-25318 CrossRefPubMedGoogle Scholar
  42. 42.
    Grutzenmacher S, Mlynski R, Lang C, Scholz S, Saadi R, Mlynski G (2005) The nasal airflow in noses with septal perforation: a model study. ORL J Otorhinolaryngol Relat Spec 67(3):142–147.  https://doi.org/10.1159/000085958 CrossRefPubMedGoogle Scholar
  43. 43.
    Leong SC, Chen XB, Lee HP, Wang DY (2010) A review of the implications of computational fluid dynamic studies on nasal airflow and physiology. Rhinology 48(2):139–145.  https://doi.org/10.4193/Rhin09.133 PubMedGoogle Scholar
  44. 44.
    Lee HP, Garlapati RR, Chong VFH, Wang DY (2010) Effects of septal perforation on nasal airflow: computer simulation study. J Laryngol Otol 124(1):48–54.  https://doi.org/10.1017/S0022215109990971 CrossRefPubMedGoogle Scholar
  45. 45.
    Lindemann J, Reichert M, Kröger R, Schuler P, Hoffmann T, Sommer F (2016) Numerical simulation of humidification and heating during inspiration in nose models with three different located septal perforations. Eur Arch Otorhinolaryngol 273(7):1795–1800.  https://doi.org/10.1007/s00405-015-3818-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • F. Sommer
    • 1
  • T. K. Hoffmann
    • 1
  • G. Mlynski
    • 2
  • M. Reichert
    • 1
  • A.-S. Grossi
    • 1
  • R. Kröger
    • 3
  • J. Lindemann
    • 1
  1. 1.Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und HalschirurgieUniversitätsklinik UlmUlmDeutschland
  2. 2.Klinik für Hals‑, Nasen‑, Ohrenheilkunde, Kopf- und HalschirurgieUniversitätsklinik GreifswaldGreifswaldDeutschland
  3. 3.ANSYS GermanyDarmstadtDeutschland

Personalised recommendations