Skip to main content
Log in

Neue Perspektiven des Skelettmuskel-Tissue-Engineerings

New perspectives in skeletal muscle tissue engineering

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Die Entwicklungen im Bereich des Skelettmuskel-Tissue-Engineerings sind durch den enormen Wissenszuwachs im Bereich der Stammzellforschung und der Biomaterialien rasant. In diesem Artikel wird ein allgemeiner Überblick über das Forschungsgebiet des Skelettmuskel-Tissue-Engineerings gegeben, aktuelle Erkenntnisse werden diskutiert und einige neue Perspektiven aufgezeigt. Des Weiteren werden Ergebnisse zur myogenen Differenzierung von humanen mesenchymalen Stammzellen und Satellitenzellen präsentiert.

Abstract

Due to the enormous expansion of knowledge in the fields of stem cell research and biomaterials, skeletal muscle tissue engineering represents a rapidly developing field of biomedical research. This article provides a general overview of skeletal muscle tissue engineering, including a discussion of recent findings and future research perspectives. Additionally, the results of myogenic differentiation of human mesenchymal stem cells and satellite cells are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    CAS  PubMed  Google Scholar 

  2. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  CAS  PubMed  Google Scholar 

  3. Badylak SF, Weiss DJ, Caplan A et al (2012) Engineered whole organs and complex tissues. Lancet 379:943–952

    Article  PubMed  Google Scholar 

  4. Beier JP, Bitto FF, Lange C et al (2011) Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 35:397–406

    Article  CAS  PubMed  Google Scholar 

  5. Beier JP, Stern-Straeter J, Foerster VT et al (2006) Tissue engineering of injectable muscle: three-dimensional myoblast-fibrin injection in the syngeneic rat animal model. Plast Reconstr Surg 118:1113–1121 (discussion 1122–1114)

    Article  CAS  PubMed  Google Scholar 

  6. Belema Bedada F, Technau A, Ebelt H et al (2005) Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol 25:9509–9519

    Article  Google Scholar 

  7. Bitto FF, Klumpp D, Lange C et al (2013) Myogenic differentiation of mesenchymal stem cells in a newly developed neurotised AV-loop model. Biomed Res Int 2013:935046

    PubMed Central  PubMed  Google Scholar 

  8. Blau HM, Webster C (1981) Isolation and characterization of human muscle cells. Proc Natl Acad Sci U S A 78:5623–5627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Borschel GH, Dennis RG, Kuzon WM Jr (2004) Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 113:595–602 (discussion 603–594)

    Article  PubMed  Google Scholar 

  10. Brand-Saberi B (2005) Genetic and epigenetic control of skeletal muscle development. Ann Anat 187:199–207

    Article  CAS  PubMed  Google Scholar 

  11. Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251

    Article  CAS  PubMed  Google Scholar 

  12. Cronin EM, Thurmond FA, Bassel-Duby R et al (2004) Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells. J Biomed Mater Res A 69:373–381

    Article  PubMed  Google Scholar 

  13. Dennis RG, Kosnik PE II, Gilbert ME et al (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295

    CAS  PubMed  Google Scholar 

  14. Di Rocco G, Iachininoto MG, Tritarelli A et al (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119:2945–2952

    Article  Google Scholar 

  15. Gang EJ, Jeong JA, Hong SH et al (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22:617–624

    Article  PubMed  Google Scholar 

  16. Gingras J, Rioux RM, Cuvelier D et al (2009) Controlling the orientation and synaptic differentiation of myotubes with micropatterned substrates. Biophys J 97:2771–2779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Huang YC, Dennis RG, Larkin L et al (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98:706–713

    Article  PubMed  Google Scholar 

  18. Jungebluth P, Alici E, Baiguera S et al (2011) Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: a proof-of-concept study. Lancet 378:1997–2004

    Article  CAS  PubMed  Google Scholar 

  19. Kaltz N, Ringe J, Holzwarth C et al (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316:2609–2617

    Article  CAS  PubMed  Google Scholar 

  20. Kamelger FS, Marksteiner R, Margreiter E et al (2004) A comparative study of three different biomaterials in the engineering of skeletal muscle using a rat animal model. BioMaterials 25:1649–1655

    Article  CAS  PubMed  Google Scholar 

  21. Klumpp D, Horch RE, Kneser U et al (2010) Engineering skeletal muscle tissue – new perspectives in vitro and in vivo. J Cell Mol Med 14:2622–2629

    Article  PubMed  Google Scholar 

  22. Levenberg S, Rouwkema J, Macdonald M et al (2005) Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23:879–884

    Article  CAS  PubMed  Google Scholar 

  23. Messina A, Bortolotto SK, Cassell OC et al (2005) Generation of a vascularized organoid using skeletal muscle as the inductive source. Faseb J 19:1570–1572

    CAS  PubMed  Google Scholar 

  24. Rossi CA, Pozzobon M, De Coppi P (2010) Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6:167–172

    Article  PubMed Central  PubMed  Google Scholar 

  25. Saxena AK, Marler J, Benvenuto M et al (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532

    Article  CAS  PubMed  Google Scholar 

  26. Schulze M, Belema-Bedada F, Technau A et al (2005) Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev 19:1787–1798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Stern-Straeter J, Bonaterra GA, Hormann K et al (2009) Identification of valid reference genes during the differentiation of human myoblasts. BMC Mol Biol 10:66

    Article  PubMed Central  PubMed  Google Scholar 

  28. Stern-Straeter J, Bonaterra GA, Juritz S et al (2014) Evaluation of the effects of different culture media on the myogenic differentiation potential of adipose tissue- or bone marrow-derived human mesenchymal stem cells. Int J Mol Med 33:160–170

    CAS  PubMed  Google Scholar 

  29. Stern-Straeter J, Bonaterra GA, Kassner SS et al (2011) Characterization of human myoblast differentiation for tissue-engineering purposes by quantitative gene expression analysis. J Tissue Eng Regen Med 5:e197–e206

    Article  CAS  PubMed  Google Scholar 

  30. Stern-Straeter J, Riedel F, Bran G et al (2007) Advances in skeletal muscle tissue engineering. In Vivo 21:435–444

    CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Stern-Straeter und K. Hörmann geben an, dass kein Interessenkonflikt besteht. Diese Arbeit enthält Teilaspekte der Habilitationsschrift des Erstautors J. Stern-Straeter.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stern-Straeter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stern-Straeter, J., Hörmann, K. Neue Perspektiven des Skelettmuskel-Tissue-Engineerings. HNO 62, 415–422 (2014). https://doi.org/10.1007/s00106-014-2863-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-014-2863-z

Schlüsselwörter

Keywords

Navigation