Skip to main content
Log in

Plasmamedizin in der Dermatologie

Wirkmechanismen und Anwendungsmöglichkeiten

Plasma medicine in dermatology

Mechanisms of action and clinical applications

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die Plasmamedizin hat sich in den letzten Jahren zu einem innovativen Forschungsgebiet mit großem Potenzial entwickelt. Seit der Entwicklung von Niedertemperaturplasmen stehen neue, fassettenreiche Anwendungsmöglichkeiten in der Medizin zur Verfügung. So hat sich eine multidisziplinäre Interessengruppe aus Medizinern, Physikern und Biologen gebildet, die gemeinsam versuchen, die Plasmamedizin zu verstehen und sowohl klinische als auch wissenschaftliche Fragestellungen zu beantworten. Für die Dermatologie werden neue Horizonte in der Wundheilung, Geweberegeneration, Behandlung von Hautinfektionen und Bekämpfung von Tumorerkrankungen eröffnet. Die größte Herausforderung bei der Einführung der Plasmamedizin in den klinischen Alltag wird es jedoch sein, die Kenntnis über die genauen Wirkmechanismen von Plasma auf Zellebene weiter zu vertiefen. Nur so kann eine sichere Anwendung von Plasma am Patienten gewährleistet werden.

Abstract

Plasma medicine has developed into an innovative field of research showing high potential. Since the establishment of cold atmospheric plasma, new, multifaceted medical treatment opportunities have become available. Within a short time a multidisciplinary special interest group of medical scientists, physicists, and biologists was created, aiming to understand plasma medicine and answer clinical as well as scientific questions. In dermatology, new horizons are being opened for wound healing, tissue regeneration, treatment of skin infections, and tumor therapy. A major task will be the introduction of plasma into clinical medicine and, simultaneously, the further investigation of the mechanisms of action of plasma at the cellular level. Only then can the safety of plasma treatment in patients be assured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ahlfeld B, Li Y, Boulaaba A et al (2015) Inactivation of a foodborne norovirus outbreak strain with nonthermal atmospheric pressure plasma. MBio 6(1): e02300-14.

  2. Alkawareek MY, Gorman SP, Graham WG et al (2014) Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int J Antimicrob Agents 43:154–160

    Article  CAS  PubMed  Google Scholar 

  3. Arjunan KP, Friedman G, Fridman A et al (2012) Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface 9:147–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Arndt S, Landthaler M, Zimmermann JL et al (2015) Effects of cold atmospheric plasma (CAP) on ss-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One 10:e0120041

    Article  PubMed Central  PubMed  Google Scholar 

  5. Arndt S, Unger P, Wacker E et al (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS One 8:e79325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arndt S, Wacker E, Li YF et al (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 22:284–289

    Article  CAS  PubMed  Google Scholar 

  7. Bekeschus S, Kolata J, Müller A, Kramer A, Weltmann KP, Bröker B, Masur K (2013) Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment. Plasma Med 3:1–13

    Article  Google Scholar 

  8. Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Bröker B, Weltmann KD (2013) Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym 10:706–713

    Article  CAS  Google Scholar 

  9. Blackert S, Haertel B, Wende K et al (2013) Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT). J Dermatol Sci 70:173–181

    Article  CAS  PubMed  Google Scholar 

  10. Brehmer F, Haenssle HA, Daeschlein G et al (2015) Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm((R)) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol 29:148–155

    Article  CAS  PubMed  Google Scholar 

  11. Daeschlein G, Darm K, Niggemeier M, Majunke S et al (2009) Selective antistaphylococcal activity of atmospheric pressure plasma jet (APPJ) on human skin. Second International Conference on Plasma Medicine, San Antonio

    Google Scholar 

  12. Daeschlein G, Napp M, von Podewils S, Lutze S et al (2014) In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym 11:175–183

    Article  CAS  Google Scholar 

  13. Daeschlein G, Scholz S, Ahmed R et al (2012) Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect 81:177–183

    Article  CAS  PubMed  Google Scholar 

  14. Dobrynin D, Friedman G, Friedman G, Fridman A (2009) Physical and biological mechanisms of direct plasma interaction with living tissue. New J Phys 11:115–120

    Article  Google Scholar 

  15. Fernandez A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33:24–29

    Article  CAS  PubMed  Google Scholar 

  16. Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Applied Phys 38 R1–R24

    Article  CAS  Google Scholar 

  17. Graves D (2012) The emerging role of reactive oxy-gen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001

    Article  Google Scholar 

  18. Grundmann H, Aires-de-Sousa M, Boyce J et al (2006) Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885

    Article  PubMed  Google Scholar 

  19. Haertel B, Strassenburg S, Oehmigen K et al (2013) Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes. Biomed Res Int 2013:761451

    Article  PubMed Central  PubMed  Google Scholar 

  20. Haertel B, Volkmann F, von Woedtke T et al (2012) Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology 217:628–633

    Article  CAS  PubMed  Google Scholar 

  21. Haertel B, Wende K, von Woedtke T et al (2011) Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes. Exp Dermatol 20:282–284

    Article  PubMed  Google Scholar 

  22. Heinlin J, Isbary G, Stolz W et al (2011) Plasma applications in medicine with a special focus on dermatology. J Eur Acad Dermatol Venereol 25:1–11

    Article  CAS  PubMed  Google Scholar 

  23. Heinlin J, Isbary G, Stolz W et al (2013) A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol 27:324–331

    Article  CAS  PubMed  Google Scholar 

  24. Heinlin J, Maisch T, Zimmermann JL et al (2013) Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Future Microbiol 8:1097–1106

    Article  CAS  PubMed  Google Scholar 

  25. Heinlin J, Zimmermann JL, Zeman F et al (2013) Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen 21:800–807

    Article  PubMed  Google Scholar 

  26. Hirst AM, Simms MS, Mann VM et al (2015) Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer 112:1536–1545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hoentsch M, Woedtke von T, Weltmann KD, Nebe JB (2012) Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro. J Phys D Appl Phys. doi:10.1088/0022-3727/45/2/025206

  28. Hong YF, Kang JG, Lee HY et al (2009) Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett Appl Microbiol 48:33–37

    Article  CAS  PubMed  Google Scholar 

  29. Isbary G, Heinlin J, Shimizu T et al (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 167:404–410

    Article  CAS  PubMed  Google Scholar 

  30. Isbary G, Morfill G, Schmidt HU et al (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163:78–82

    CAS  PubMed  Google Scholar 

  31. Isbary G, Morfill G, Zimmermann J et al (2011) Cold atmospheric plasma: a successful treatment of lesions in Hailey-Hailey disease. Arch Dermatol 147:388–390

    Article  PubMed  Google Scholar 

  32. Isbary G, Shimizu T, Zimmermann JL et al (2013) Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection. New Microbes New Infect 1:41–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Isbary G, Shimizu T, Zimmermann JL, Heinlin J, Al-Zaabi S, Rechfeld M, Morfill GE, Karrer S, Stolz M (2014) Randomized placebo-controllled clinical trial showed cold atmospheric argon plasma in herpes zoster relieved acute pain and accelerated healing. Clin Plasma Med J 2:50–55

    Article  Google Scholar 

  34. Isbary G, Stolz W, Shimizu T, Monetti R, Bunk W, Schmidt H-U, Morfill GE, Klämpfl TG, Steffes B, Thomas HM, Heinlin J, Karrer S, Landthaler M, Zimmermann JL (2013) Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med J 1:25–30

    Article  Google Scholar 

  35. Ishaq M, Evans MM, Ostrikov KK (2014) Effect of atmospheric gas plasmas on cancer cell signaling. Int J Cancer 134:1517–1528

    Article  CAS  PubMed  Google Scholar 

  36. Kalghatgi S, Friedman G, Fridman A et al (2010) Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng 38:748–757

    Article  PubMed  Google Scholar 

  37. Kalghatgi S, Kelly CM, Cerchar E et al (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6:e16270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kieft IE, Broers JL, Caubet-Hilloutou V et al (2004) Electric discharge plasmas influence attachment of cultured CHO K1 cells. Bioelectromagnetics 25:362–368

    Article  CAS  PubMed  Google Scholar 

  39. Kim CH, Bahn JH, Lee SH et al (2010) Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J Biotechnol 150:530–538

    Article  CAS  PubMed  Google Scholar 

  40. Kim JY, Ballato J, Foy P et al (2011) Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron 28:333–338

    Article  CAS  PubMed  Google Scholar 

  41. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846

    Article  PubMed Central  PubMed  Google Scholar 

  42. Maisch T, Shimizu T, Isbary G et al (2012) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78:4242–4247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Maisch T, Shimizu T, Li YF et al (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 7:e34610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Maisch T, Shimizu T, Mitra A et al (2012) Contact-free cold atmospheric plasma treatment of Deinococcus radiodurans. J Ind Microbiol Biotechnol 39:1367–1375

    Article  CAS  PubMed  Google Scholar 

  45. Marschewski M, Hirschberg J, Omairi T et al (2012) Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasma-induced changes in lipid composition. Exp Dermatol 21:921–925

    Article  CAS  PubMed  Google Scholar 

  46. Mertens N, Helmke A, Goppold A, Emmert S, Kaemling A, Wandke D, Vioel W (2009) Low temperature plasma treatment of human tissue. Second International Conference on Plasma Medicine, San Antonio

    Google Scholar 

  47. Mertens N, Helmke A, Vioel W (2009) Dielectric barrier discharge plasma – an upcoming approach in skin treatment. 2nd International Workshop on Plasma-Tissue Interactions, Greifswald

    Google Scholar 

  48. Metelmann HR, Vu TT, Do HT et al (2013) Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med 1:30–35

    Article  Google Scholar 

  49. Niemira BA (2012) Cold plasma reduction of Salmonella and Escherichia coli O157:H7 on almonds using ambient pressure gases. J Food Sci 77:M171–M175

    Article  Google Scholar 

  50. Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples. J Food Prot 71:1357–1365

    PubMed  Google Scholar 

  51. Park SB, Kim B, Bae H et al (2015) Differential epigenetic effects of atmospheric cold plasma on MCF-7 and MDA-MB-231 breast cancer cells. PLoS One 10:e0129931

    Article  PubMed Central  PubMed  Google Scholar 

  52. Schmidt A, Wende K, Bekeschus S et al (2013) Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic Res 47:577–592

    Article  CAS  PubMed  Google Scholar 

  53. Shashurin A, Stepp M, Hawley TS, Pal-Ghosh S, Brieda L, Bronnikov S, Jurjus RA, Keidar M (2010) Influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Process Polym 7:294–300

    Article  CAS  Google Scholar 

  54. Siu A, Volotskova O, Cheng X et al (2015) Differential effects of cold atmospheric plasma in the treatment of malignant glioma. PLoS One 10:e0126313

    Article  PubMed Central  PubMed  Google Scholar 

  55. Spange S, Pfuch A, Wiegand C et al (2015) Atmospheric pressure plasma CVD as a tool to functionalise wound dressings. J Mater Sci Mater Med 26:76

    Article  PubMed  Google Scholar 

  56. Ulrich C, Kluschke F, Patzelt A, et al (2015) Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: A pilot study. J Wound Care 24:(5):196–203

  57. Wende K, Strassenburg S, Haertel B et al (2014) Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol Int 38:412–425

    Article  CAS  PubMed  Google Scholar 

  58. Wiegand C, Beier O, Horn K et al (2014) Antimicrobial impact of cold atmospheric pressure plasma on medical critical yeasts and bacteria cultures. Skin Pharmacol Physiol 27:25–35

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Liang Y, Wei K et al (2014) Rapid allergen inactivation using atmospheric pressure cold plasma. Environ Sci Technol 48:2901–2909

    Article  CAS  PubMed  Google Scholar 

  60. Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A, Boxhammer V, Schlegel J, Gansbacher B, Anton M (2011) Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys 44:505201

    Article  Google Scholar 

  61. Ziuzina D, Patil S, Cullen PJ et al (2013) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114:778–787

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karrer.

Ethics declarations

Interessenkonflikt

S. Karrer und S. Arndt geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karrer, S., Arndt, S. Plasmamedizin in der Dermatologie. Hautarzt 66, 819–828 (2015). https://doi.org/10.1007/s00105-015-3686-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-015-3686-x

Schlüsselwörter

Keywords

Navigation