Skip to main content
Log in

Biologie der Epidermodysplasia-verruciformis-assoziierten HPV

Biology of epidermodysplasia verruciformis-associated HPV

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Das Genus β-Papillomvirus (βPV) umfasst gegenwärtig mehr als 40 Virustypen einschließlich der sog. Epidermodysplasia-verruciformis (EV)-assoziierten HPV, die ursprünglich mittels Southern-Blot-Hybridisierung bei EV-Patienten nachgewiesen wurden. βPV sind in der Allgemeinbevölkerung ubiquitär verbreitet und etablieren sich oft schon in den ersten Lebenswochen. Haarfollikel gelten als natürliches Reservoir. Etwa 25% der bei Erwachsenen nachgewiesenen βPV persistieren über mindestens 9 Monate. Aufgrund sehr geringer Virusproduktion erfolgt die Serokonversion gegen βPV nur schleppend. Keratinozytenhyperproliferation bei Psoriasispatienten oder nach schweren Verbrennungen stimuliert die Virusreplikation. Massive Virusreplikation ist nur bei EV-Patienten zu beobachten, verbunden mit der Induktion disseminierter Hautläsionen mit einem hohen Risiko für maligne Entartung. Bei 75% der EV-Patienten ist dies auf homozygote inaktivierende Mutationen in den Genen EVER1 oder EVER2 zurückzuführen. Ein transgenes Mausmodell belegte die kritische Bedeutung einer durch UV-Bestrahlung oder Verwundung stimulierten HPV8-Onkogenexpression für die Tumorinduktion.

Abstract

The genus betapapillomavirus (betaPV) presently comprises more than 40 virus types including the so-called epidermodysplasia verruciformis (EV)-associated HPV, which were originally detected in EV-patients by Southern blot hybridization. BetaPV are ubiquitous in the general population and frequently establish themselves already during the first weeks of life. Hair follicles are regarded as natural reservoir. About 25% of betaPV detected in adults persist for at least 9 months. Due to very low virus production, seroconversion against betaPV starts sluggishly. Hyperproliferation of keratinocytes in psoriasis patients or after severe burns stimulates virus replication. Massive virus replication only occurs in EV-patients, associated with the induction of disseminated skin lesions with a high risk of malignant conversion. In 75% of EV-patients this can be put down to homozygous, inactivating mutations in the genes EVER1 or EVER2. A transgenic mouse model substantiated the crucial role of increased HPV8 oncogene expression, induced by UV-irradiation or wounding, for tumor induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Akgül B, Lemme W, Garcia-Escudero R et al (2005) UV-B irradiation stimulates the promoter activity of the high-risk, cutaneous human papillomavirus 5 and 8 in primary keratinocytes. Arch Virol 150:145–151

    Article  PubMed  Google Scholar 

  2. Astori G, Lavergne D, Benton C et al (1998) Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. J Invest Dermatol 110:752–755

    Article  CAS  PubMed  Google Scholar 

  3. Bernard HU, Burk RD, Chen Z et al (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79

    Article  CAS  PubMed  Google Scholar 

  4. Bouvard V, Baan R, Straif K et al (2009) A review of human carcinogens – Part B: biological agents. Lancet Oncol 10:321–322

    Article  PubMed  Google Scholar 

  5. Boxman IL, Berkhout RJ, Mulder LH et al (1997) Detection of human papillomavirus DNA in plucked hairs from renal transplant recipients and healthy volunteers. J Invest Dermatol 108:712–715

    Article  CAS  PubMed  Google Scholar 

  6. Cronin JG, Mesher D, Purdie K et al (2008) Beta-papillomaviruses and psoriasis: an intra-patient comparison of human papillomavirus carriage in skin and hair. Br J Dermatol 159:113–119

    Article  CAS  PubMed  Google Scholar 

  7. De Koning MN, Weissenborn SJ, Abeni D et al (2009) Prevalence and associated factors of betapapillomavirus infections in individuals without cutaneous squamous cell carcinoma. J Gen Virol 90:1611–1621

    Article  Google Scholar 

  8. Dell’Oste V, Azzimonti B, De Andrea M et al (2009) High beta-HPV DNA loads and strong seroreactivity are present in epidermodysplasia verruciformis. J Invest Dermatol 129:1026–1034

    Article  Google Scholar 

  9. Favre M, Majewski S, Noszczyk B et al (2000) Antibodies to human papillomavirus type 5 are generated in epidermal repair processes. J Invest Dermatol 114:403–407

    Article  CAS  PubMed  Google Scholar 

  10. Favre M, Orth G, Majewski S et al (1998) Psoriasis: a possible reservoir for human papillomavirus type 5, the virus associated with skin carcinomas of epidermodysplasia verruciformis. J Invest Dermatol 110:311–317

    Article  CAS  PubMed  Google Scholar 

  11. Hufbauer M, Lazic D, Akgül B et al (2010) Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice. Virology 403:128–136

    Article  CAS  PubMed  Google Scholar 

  12. Köhler A, Forschner T, Meyer T et al (2007) Multifocal distribution of cutaneous human papillomavirus types in hairs from different skin areas. Br J Dermatol 156:1078–1080

    Article  PubMed  Google Scholar 

  13. Lazarczyk M, Cassonnet P, Pons C et al (2009) The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev 73:348–370

    Article  CAS  PubMed  Google Scholar 

  14. Marcuzzi GP, Hufbauer M, Kasper HU et al (2009) Spontaneous tumour development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J Gen Virol 90:2855–2864

    Article  CAS  PubMed  Google Scholar 

  15. Michael KM, Waterboer T, Pfister H et al (2010) Seroreactivity of 38 human papillomavirus types in epidermodysplasia verruciformis patients, relatives, and controls. J Invest Dermatol 130:841–848

    Article  CAS  PubMed  Google Scholar 

  16. Michael KM, Waterboer T, Sehr P et al (2008) Seroprevalence of 34 human papillomavirus types in the German general population. PLoS Pathog 4:e1000091

    Article  PubMed  Google Scholar 

  17. Orth G (2006) Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. Semin Immunol 18:362–374

    Article  CAS  PubMed  Google Scholar 

  18. Pfefferle R, Marcuzzi GP, Akgül B et al (2008) The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. J Invest Dermatol 128:2310–2315

    Article  CAS  PubMed  Google Scholar 

  19. Pfister H (2003) Chapter 8: Human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 31:52–56

    PubMed  Google Scholar 

  20. Pfister H (2008) HPV und Neoplasien der Haut. Hautarzt 59:26–30

    Article  CAS  PubMed  Google Scholar 

  21. Plasmeijer EI, Neale RE, Buettner PG et al (2010) Betapapillomavirus infection profiles in tissue sets from cutaneous squamous cell-carcinoma patients. Int J Cancer 126:2614–2621

    CAS  PubMed  Google Scholar 

  22. Schaper ID, Marcuzzi GP, Weissenborn SJ et al (2005) Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65:1394–1400

    Article  CAS  PubMed  Google Scholar 

  23. Stark S, Petridis AK, Ghim SJ et al (1998) Prevalence of antibodies against virus-like particles of Epidermodysplasia verruciformis-associated HPV8 in patients at risk of skin cancer. J Invest Dermatol 111:696–701

    Article  CAS  PubMed  Google Scholar 

  24. Weissenborn SJ, De Koning MN, Wieland U et al (2009) Intrafamilial transmission and family-specific spectra of cutaneous betapapillomaviruses. J Virol 83:811–816

    Article  CAS  PubMed  Google Scholar 

  25. Weissenborn SJ, Höpfl R, Weber F et al (1999) High prevalence of a variety of epidermodysplasia verruciformis-associated human papillomaviruses in psoriatic skin of patients treated or not treated with PUVA. J Invest Dermatol 113:122–126

    Article  CAS  PubMed  Google Scholar 

  26. Weissenborn SJ, Nindl I, Purdie K et al (2005) Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 125:93–97

    Article  CAS  PubMed  Google Scholar 

  27. Wolf P, Seidl H, Back B et al (2004) Increased prevalence of human papillomavirus in hairs plucked from patients with psoriasis treated with psoralen-UV-A. Arch Dermatol 140:317–324

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pfister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfister, H. Biologie der Epidermodysplasia-verruciformis-assoziierten HPV. Hautarzt 62, 17–21 (2011). https://doi.org/10.1007/s00105-010-2030-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-010-2030-8

Schlüsselwörter

Keywords

Navigation