Skip to main content
Log in

Hürden und Aussichten neuer antimikrobieller Konzepte in Forschung und Entwicklung

Obstacles and perspectives of new antimicrobial concepts within research and development

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Antimikrobielle Resistenzen (AMR) entwickeln sich weltweit zum ernsten Problem für das Gesundheitswesen. Über Jahrzehnte hinweg wurde nur unzureichend an der Erforschung grundlegend neuer Antibiotika gearbeitet, folglich erreichten nur wenige Präparate den Markt. Der Druck ist seither enorm gewachsen, neue wirksame Konzepte zur Reduktion von Infektionen durch Problemerreger zu implementieren. Von politischer Seite wurde diese Dringlichkeit erkannt und umfangreiche Förderprogramme wurden sowohl national als auch international ins Leben gerufen. Eine tragende Säule vieler öffentlich finanzierter Maßnahmen ist die Erforschung und Entwicklung von Therapeutika, deren Wirkungen auf neuen Mechanismen beruhen und/oder die Bildung von Resistenzen minimieren. Neben der aktuellen klinischen Entwicklungspipeline werden in diesem Artikel ausgewählte Beispiele aus der Forschung und frühen Entwicklung aufgeführt. Der Fokus liegt hierbei auf Antibiotika, aber auch Alternativen wie Antivirulenz- und Phagentherapie sowie Immunmodulatoren werden in Ansätzen diskutiert. AMR ist längst kein rein gesundheitspolitisches Problem mehr, sondern von gesamtgesellschaftlicher Bedeutung. Es ist daher dringend geboten, Forschungsinfrastrukturen und öffentlich-private Partnerschaften zu stärken, regulatorische Hürden abzubauen und Innovationen für die antimikrobielle Therapie mit Hochdruck voranzutreiben.

Abstract

Antimicrobial resistance (AMR) has developed into a serious problem for the healthcare sector worldwide. Research on fundamentally novel antibiotics has been insufficient for decades and only a few new compounds have reached the market. Thus, the pressure to implement novel and effective concepts for the reduction of infections through problematic pathogens has dramatically increased. This demand has been recognized by politicians and comprehensive national and international funding programs have been launched. A major role of many funding lines is the investigation and development of therapeutics exerting a novel mechanism of action and/or minimizing the frequency of resistance. In addition to the actual clinical pipeline, this article lists selected examples from research and early development with a special focus on antibiotics. Moreover, alternative approaches like antivirulence and phage therapy as well as immunomodulation are summarized. AMR is no longer solely a healthcare policy, but is of societal significance as a whole. A consolidation of infrastructures and public-private partnerships, a reduction of regulatory obstacles and a continuous pursuit of innovations for antimicrobial therapy are urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Kupferschmidt K (2017) Resistance figthers. Science 352:758–761

    Article  Google Scholar 

  2. World Bank (2016) Drug-Resistant Infections: A Threat to Our Economic Future (Discussion Draft). Washington, DC

  3. WHO (2015) Global action plan on antimicrobial resistance. WHO, Geneva

    Google Scholar 

  4. CARA (2016) An Alliance to Support the U.N. resolution on antimicrobial resistance: CARA: the conscience of antimicrobial resistance accountability

  5. The Federal Government (2015) DART 2020 Fighting antibiotic resistance for the good of both humans and animals. The Federal Government, Berlin

    Google Scholar 

  6. Bundesministerium für Gesundheit (2017) DART 2020, 2. Zwischenbericht. Bundesministerium für Gesundheit, Berlin

    Google Scholar 

  7. WHO (2017) Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO, Geneva

    Google Scholar 

  8. Cooper MA, Shlaes D (2011) Fix the antibiotics pipeline. Nature 472:32–32

    Article  CAS  PubMed  Google Scholar 

  9. O’shea R, Moser HE (2008) Physicochemical properties of antibacterial compounds: implications for drug discovery. J Med Chem 51:2871–2878

    Article  PubMed  Google Scholar 

  10. Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA (2015) ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov 14:529–542

    Article  CAS  PubMed  Google Scholar 

  11. Fernandes P, Martens E (2017) Antibiotics in late clinical development. Biochem Pharmacol 133:152–163

    Article  CAS  PubMed  Google Scholar 

  12. Global Union for Antibiotics Research and Development (GUARD) Initiative Commissioned by the German Federal Ministry of Health (2015) Breaking through the wall. German Federal Ministry of Health, Berlin

    Google Scholar 

  13. Boston Consulting Group, Federal Ministry of Health (2017) Follow-up report for the German GUARD initiative: “Breaking through the wall”. Federal Ministry of Health, Berlin

    Google Scholar 

  14. Rex JH, Outterson K (2016) Antibiotic reimbursement in a model delinked from sales: a benchmark-based worldwide approach. Lancet Infect Dis 16:500–505

    Article  PubMed  Google Scholar 

  15. https://clinicaltrials.gov. Zugegriffen: 01.01.2018

  16. https://www.nabriva.com/pipeline-research. Zugegriffen: 21.03.2018

  17. http://www.entasistx.com/pipeline. Zugegriffen: 21.03.2018

  18. https://www.summitplc.com/programmes/c-difficile-infections. Zugegriffen: 21.03.2018

  19. http://www.sequella.com/pipeline. Zugegriffen: 21.03.2018

  20. https://www.polyphor.com/pol7080. Zugegriffen: 21.03.2018

  21. https://www.gsk-clinicalstudyregister.com/compounds/gepotidacin/all/1. Zugegriffen: 21.03.2018

  22. https://www.debiopharm.com/our-business/pipeline/item/3392. Zugegriffen: 21.03.2018

  23. http://www.crystalgenomics.com/en/clinical/antibiotic.html. Zugegriffen: 21.03.2018

  24. http://www.ipharminc.com/brilacidin-1. Zugegriffen: 21.03.2018

  25. https://www.destinypharma.com/platform/xf-73-exeporfinium-chloride. Zugegriffen: 21.03.2018

  26. http://www.mgb-biopharma.com/programs-overview-2. Zugegriffen: 21.03.2018

  27. https://sperotherapeutics.com/pipeline. Zugegriffen: 21.03.2018

  28. https://www.gsk-clinicalstudyregister.com/compounds/gsk3036656/all. Zugegriffen: 21.03.2018

  29. http://www.qurient.com/?page_id=36238&lang=en. Zugegriffen: 21.03.2018

  30. http://www.newtbdrugs.org/pipeline/compound/macozinonone-mcz-pbtz-169. Zugegriffen: 21.03.2018

  31. http://www.cptrinitiative.org/wp-content/uploads/2017/05/Jeffrey_Hafkin_CPTR2017_JH.pdf. Zugegriffen: 21.03.2018

  32. https://www.tballiance.org/portfolio/compound/tba-7371-dpre1-inhibitor. Zugegriffen: 21.03.2018

  33. http://www.crestonepharma.com/index.php/cdi. Zugegriffen: 21.03.2018

  34. https://www.venatorx.com. Zugegriffen: 21.03.2018

  35. The PEW Charitable Trusts (2017) Antibiotics currently in clinical development

    Google Scholar 

  36. European Observatory on Health Systems and Policies (2016) Targeting innovation in antibiotic drug discovery and development. European Observatory on Health Systems and Policies, London

    Google Scholar 

  37. Cahill ST, Cain R, Wang DY et al (2017) Cyclic boronates inhibit all classes of beta-lactamases. Antimicrob Agents Chemother 61:e2260–e2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blaskovich MA, Butler MS, Cooper MA (2017) Polishing the tarnished silver bullet: the quest for new antibiotics. Essays Biochem 61:103–114

    Article  PubMed  PubMed Central  Google Scholar 

  39. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  40. Tang X, Li J, Millan-Aguinaga N et al (2015) Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. Acs Chem Biol 10:2841–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wohlleben W, Mast Y, Stegmann E, Ziemert N (2016) Antibiotic drug discovery. Microb Biotechnol 9:541–548

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  PubMed  Google Scholar 

  43. Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  44. Guo CJ, Chang FY, Wyche TP et al (2017) Discovery of reactive microbiota-derived metabolites that inhibit host proteases. Cell 168:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol 304:14–22

    Article  CAS  PubMed  Google Scholar 

  46. Cooper MA (2015) A community-based approach to new antibiotic discovery. Nat Rev Drug Discov 14:587–588

    Article  CAS  PubMed  Google Scholar 

  47. Seiple IB, Zhang Z, Jakubec P et al (2016) A platform for the discovery of new macrolide antibiotics. Nature 533:338–345

    Article  CAS  PubMed  Google Scholar 

  48. Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 53:8840–8869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kling A, Lukat P, Almeida DV et al (2015) Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 348:1106–1112

    Article  CAS  PubMed  Google Scholar 

  50. Rajamuthiah R, Fuchs BB, Conery AL et al (2015) Repurposing salicylanilide anthelmintic drugs to combat drug resistant staphylococcus aureus. PLoS ONE 10:e124595

    Article  PubMed  PubMed Central  Google Scholar 

  51. Richter MF, Drown BS, Riley AP et al (2017) Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545:299–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wagner S, Sommer R, Hinsberger S et al (2016) Novel strategies for the treatment of pseudomonas aeruginosa infections. J Med Chem 59:5929–5969

    Article  CAS  PubMed  Google Scholar 

  53. Sass P, Josten M, Famulla K et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci Usa 108:17474–17479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gersch M, Famulla K, Dahmen M et al (2015) AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat Commun 6:6320–6331

    Article  CAS  PubMed  Google Scholar 

  55. Lehar SM, Pillow T, Xu M et al (2015) Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–328

    Article  CAS  PubMed  Google Scholar 

  56. Klahn P, Bronstrup M (2017) Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 34:832–885

    Article  CAS  PubMed  Google Scholar 

  57. Czaplewski L, Bax R, Clokie M et al (2016) Alternatives to antibiotics – a pipeline portfolio review. Lancet Infect Dis 16:239–251

    Article  CAS  PubMed  Google Scholar 

  58. Drew L (2016) Microbiota: reseeding the gut. Nature 540:S109–S112

    Article  CAS  PubMed  Google Scholar 

  59. Reardon S (2014) Phage therapy gets revitalized. Nature 510:15–16

    Article  CAS  PubMed  Google Scholar 

  60. Pirisi A (2000) Phage therapy – advantages over antibiotics? Lancet 356:1418

    Article  CAS  PubMed  Google Scholar 

  61. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595

    Article  CAS  PubMed  Google Scholar 

  62. Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 5:379–382

    Article  Google Scholar 

  63. Fjell CD, Hiss JA, Hancock RE, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51

    Article  PubMed  Google Scholar 

  64. Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334

    Article  CAS  PubMed  Google Scholar 

  65. Dickey SW, Cheung GYC, Otto M (2017) Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 16:457–471

    Article  CAS  PubMed  Google Scholar 

  66. De La Fuente-Nunez C, Reffuveille F, Mansour SC et al (2015) D‑enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal pseudomonas aeruginosa infections. Chem Biol 22:196–205

    Article  PubMed  PubMed Central  Google Scholar 

  67. EDCTP (2017) Annual report 2016. EDCTP, The Hague

    Google Scholar 

  68. Global Antibiotic Research & Development Partnership (2016) Business plan 2017–2023. GARDP, Geneva

    Google Scholar 

  69. Mullard A (2017) Preclinical antibiotic pipeline gets a pick-me-up. Nat Rev Drug Discov 16:741–742

    Article  CAS  PubMed  Google Scholar 

  70. Bundesministerium für Gesundheit (2016) Bericht zu den Ergebnissen des Pharmadialogs. Bundesministerium für Gesundheit, Berlin

    Google Scholar 

Download references

Danksagung

Wir danken dem Bundesministerium für Bildung und Forschung (BMBF) im Rahmen der Konsortien InfectControl 2020 und dem Leibniz Research Cluster Bio/synthetische multifunktionale Mikroproduktionseinheiten – Neue Wege der Wirkstoff-Entwicklung sowie dem Freistaat Thüringen für finanzielle Unterstützung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kloß.

Ethics declarations

Interessenkonflikt

F. Kloß und S. Gerbach geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloß, F., Gerbach, S. Hürden und Aussichten neuer antimikrobieller Konzepte in Forschung und Entwicklung. Bundesgesundheitsbl 61, 595–605 (2018). https://doi.org/10.1007/s00103-018-2725-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-018-2725-z

Schlüsselwörter

Keywords

Navigation