Advertisement

Ableitung von HBM-I-Werten für Perfluoroktansäure (PFOA) und Perfluoroktansulfonsäure (PFOS) – Stellungnahme der Kommission „Humanbiomonitoring“ des Umweltbundesamts

  • Umweltbundesamt
Bekanntmachungen – Amtliche Mitteilungen

HBM-I values for Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) in blood plasma - Statement of the German Human Biomonitoring Commission (HBM Commission)

Supplementary material

103_2018_2709_MOESM1_ESM.pdf (498 kb)
Eine detaillierte Zusammenfassung und Bewertung der aktuellen Literatur

Literatur

  1. 1.
    Buck RC, Franklin J, Berger U et al (2011) Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7:513–541PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Paul AG, Jones KC, Sweetman AJ (2009) A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 43:386–392PubMedCrossRefGoogle Scholar
  3. 3.
    Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40:32–44PubMedCrossRefGoogle Scholar
  4. 4.
    OECD (2005) Results of survey on production and use of PFOS, PFAS and PFOA, related substances and products/mixtures containing these substances. ENV/JM/MONO(2005). http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono (2005)1. Zugegriffen: 18. Jan. 2018 Google Scholar
  5. 5.
    EU (2006) RICHTLINIE 2006/122/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 12. Dezember 2006 zur dreißigsten Änderung der Richtlinie 76/769/EWG des Rates zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten für Beschränkungen des Inverkehrbringens und der Verwendung gewisser gefährlicher Stoffe und Zubereitungen (Perfluoroctansulfonate). In: Europäische Union (ed)Google Scholar
  6. 6.
    Stockholm Convention (2009) The new POPs under the Stockholm Convention. http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx . Zugegriffen: 18. Jan. 2018 Google Scholar
  7. 7.
    ECHA (2014) Annex XV Restriction Report - Proposal for a Restriction Substance Name: PFOA, PFOA salts and PFOA-related substances, version 1.0 (German and Norwegian competent authorities). https://echa.europa.eu/web/guest/registry-of-submitted-restriction-proposal-intentions . Zugegriffen: 7. März 2017 Google Scholar
  8. 8.
    Vierke L, Staude C, Biegel-Engler A, Drost W, Schulte C (2012) Perfluorooctanoic acid (PFOA) – main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 24:16CrossRefGoogle Scholar
  9. 9.
    EPA (2000) EPA and 3 M annonce phase out of PFOS. http://yosemite.epa.gov/opa/admpress.nsf/0/33aa946e6cb11f35852568e1005246b4 . Zugegriffen: 18. Jan. 2018 Google Scholar
  10. 10.
  11. 11.
    EPA (2017) EPA's Non-CBI Summary Tables for 2015 Company Progress Reports (Final Progress Reports). https://www.epa.gov/sites/production/files/2017-02/documents/2016_pfoa_stewardship_summary_table_0.pdf . Zugegriffen: 25. Jan. 2018 Google Scholar
  12. 12.
    Wang Z, Cousins IT, Scheringer M, Buck RC, Hungerbuhler K (2014) Global emission inventories for C4-C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environ Int 70:62–75PubMedCrossRefGoogle Scholar
  13. 13.
    OECD (2015) Working towards a global emission inventory of PFASs: focus on PFCAs - status quo and the way forward. https://www.oecd.org/test-pfc/productionandemissions/ . Zugegriffen: 28. Jan. 2018 Google Scholar
  14. 14.
    Scheringer M, Trier X, Cousins IT et al (2014) Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 114:337–339PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Z, Cousins IT, Scheringer M, Hungerbühler K (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: status quo, ongoing challenges and possible solutions. Environ Int 75:172–179PubMedCrossRefGoogle Scholar
  16. 16.
    Fromme H, Wöckner M, Roscher E, Völkel W (2017) ADONA and perfluoroalkylated substances in plasma samples of German blood donors living in South Germany. Int J Hyg Environ Health 220:455–460PubMedCrossRefGoogle Scholar
  17. 17.
    Wania F (2007) A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol 41:4529–4535PubMedCrossRefGoogle Scholar
  18. 18.
    Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T (2005) A global survey of perfluorinated acids in oceans. Mar Pollut Bull 51:658–668PubMedCrossRefGoogle Scholar
  19. 19.
    Yamashita N, Taniyasu S, Petrick G et al (2008) Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere 70:1247–1255PubMedCrossRefGoogle Scholar
  20. 20.
    Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568PubMedCrossRefGoogle Scholar
  21. 21.
    Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K (2007) Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bull Environ Contam Toxicol 79:427–431PubMedCrossRefGoogle Scholar
  22. 22.
    Skutlarek D, Exner M, Farber H (2006) Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut Res Int 13:299–307PubMedCrossRefGoogle Scholar
  23. 23.
    Furdui VI, Helm PA, Crozier PW et al (2008) Temporal trends of perfluoroalkyl compounds with isomer analysis in lake trout from Lake Ontario (1979-2004). Environ Sci Technol 42:4739–4744PubMedCrossRefGoogle Scholar
  24. 24.
    Yoo H, Yamashita N, Taniyasu S et al (2009) Perfluoroalkyl acids in marine organisms from Lake Shihwa. Korea Arch Environ Contam Toxicol 57:552–560PubMedCrossRefGoogle Scholar
  25. 25.
    Emmett EA, Shofer FS, Zhang H, Freeman D, Desai C, Shaw LM (2006) Community exposure to perfluorooctanoate: relationships between serum concentrations and exposure sources. J Occup Environ Med 48:759–770PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Houde M, Czub G, Small JM et al (2008) Fractionation and bioaccumulation of perfluorooctane sulfonate (PFOS) isomers in a Lake Ontario food web. Environ Sci Technol 42:9397–9403PubMedCrossRefGoogle Scholar
  27. 27.
    Beach SA, Newsted JL, Coady K, Giesy JP (2006) Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS). Rev Environ Contam Toxicol 186:133–174PubMedGoogle Scholar
  28. 28.
    Gamberg M, Braune B, Davey E et al (2005) Spatial and temporal trends of contaminants in terrestrial biota from the Canadian Arctic. Sci Total Environ 351-352:148–164PubMedCrossRefGoogle Scholar
  29. 29.
    Stahl T, Heyn J, Thiele H et al (2009) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol 57:289–298PubMedCrossRefGoogle Scholar
  30. 30.
    Barber JL, Berger U, Chaemfa C et al (2007) Analysis of per- and polyfluorinated alkyl substances in air samples from Northwest Europe. J Environ Monit 9:530–541PubMedCrossRefGoogle Scholar
  31. 31.
    Xu Z, Fiedler S, Pfister G et al (2013) Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany. Sci Total Environ 443:485–490PubMedCrossRefGoogle Scholar
  32. 32.
    Goosey E, Harrad S (2011) Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ Int 37:86–92PubMedCrossRefGoogle Scholar
  33. 33.
    EFSA (2012) Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA J 10:2743Google Scholar
  34. 34.
    BfR (2008) Gesundheitliche Risiken durch PFOS und PFOA in Lebensmitteln sind nach dem derzeitigen wissenschaftlichen Kenntnisstand unwahrscheinlich. http://www.bfr.bund.de/cm/343/gesundheitliche_risiken_durch_pfos_und_pfoa_in_lebensmitteln.pdf . Zugegriffen: 18. Jan. 2018 Google Scholar
  35. 35.
    Fromme H, Schlummer M, Möller A et al (2007) Exposure of an adult population to perfluorinated substances using duplicate diet portions and biomonitoring data. Environ Sci Technol 41:7928–7933PubMedCrossRefGoogle Scholar
  36. 36.
    Klenow S, Heinemeyer G, Brambilla G, Dellatte E, Herzke D, de Voogt P (2013) Dietary exposure to selected perfluoroalkyl acids (PFAAs) in four European regions. Food additives & contaminants. Part A Chem Analysis Control Expo Risk Assess 30:2141–2151CrossRefGoogle Scholar
  37. 37.
    Herzke D, Huber S, Bervoets L et al (2013) Perfluorinated alkylated substances in vegetables collected in four European countries; occurrence and human exposure estimations. Environ Sci Pollut Res Int 20:7930–7939PubMedCrossRefGoogle Scholar
  38. 38.
    D'Hollander W, de Voogt P, De Coen W, Bervoets L (2010) Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol 208:179–215PubMedGoogle Scholar
  39. 39.
    Hlouskova V, Hradkova P, Poustka J et al (2013) Occurrence of perfluoroalkyl substances (PFASs) in various food items of animal origin collected in four European countries. Food additives & contaminants. Part A Chem Analysis Control Expo Risk Assess 30:1918–1932CrossRefGoogle Scholar
  40. 40.
    Noorlander CW, van Leeuwen SP, Te Biesebeek JD, Mengelers MJ, Zeilmaker MJ (2011) Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands. J Agric Food Chem 59:7496–7505PubMedCrossRefGoogle Scholar
  41. 41.
    DFG (2006) Perfluoroctan-/Perfluorbutansulfonsäure (PFOS/PFBS). In: Angerer J (Hrsg) Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe der Deutschen Forschungsgemeinschaft: Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe, Bd. 2. Wiley-VCH, WeinheimGoogle Scholar
  42. 42.
    DFG (2006) Perfluoroctansäure (PFOA). In: Angerer J (Hrsg) DFG - Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe der Deutschen Forschungsgemeinschaft: Analytische Methoden zur Prüfung gesundheitsschädlicher Arbeitsstoffe, Bd. 2. Wiley-VCH, WeinheimGoogle Scholar
  43. 43.
    Haug LS, Thomsen C, Becher G (2009) A sensitive method for determination of a broad range of perfluorinated compounds in serum suitable for large-scale human biomonitoring. J Chromatogr A 1216:385–393PubMedCrossRefGoogle Scholar
  44. 44.
    Fromme H, Tittlemier SA, Völkel W, Wilhelm M, Twardella D (2009) Perfluorinated compounds--exposure assessment for the general population in Western countries. Int J Hyg Environ Health 212:239–270PubMedCrossRefGoogle Scholar
  45. 45.
    HBM-Kommission (2009) Kommission "Human-Biomonitoring" des Umweltbundesamtes: Referenzwerte für Perfluoroctansäure (PFOA) und Perfluoroctansulfonsäure (PFOS) im Blutplasma. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 52:878–885CrossRefGoogle Scholar
  46. 46.
    Haines DA, Murray J (2012) Human biomonitoring of environmental chemicals--early results of the 2007-2009 Canadian Health Measures Survey for males and females. Int J Hyg Environ Health 215:133–137PubMedCrossRefGoogle Scholar
  47. 47.
    Liu Y, Pereira AS, Beesoon S et al (2015) Temporal trends of perfluorooctanesulfonate isomer and enantiomer patterns in archived Swedish and American serum samples. Environ Int 75:215–222PubMedCrossRefGoogle Scholar
  48. 48.
    Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS (2010) PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? J Environ Monit 12:1979–2004PubMedCrossRefGoogle Scholar
  49. 49.
    Nost TH, Vestergren R, Berg V, Nieboer E, Odland JO, Sandanger TM (2014) Repeated measurements of per- and polyfluoroalkyl substances (PFASs) from 1979 to 2007 in males from Northern Norway: assessing time trends, compound correlations and relations to age/birth cohort. Environ Int 67:43–53PubMedCrossRefGoogle Scholar
  50. 50.
    Olsen GW, Mair DC, Church TR et al (2008) Decline in perfluorooctanesulfonate and other polyfluoroalkyl chemicals in American Red Cross adult blood donors, 2000-2006. Environ Sci Technol 42:4989–4995PubMedCrossRefGoogle Scholar
  51. 51.
    Schröter-Kermani C, Müller J, Jürling H, Conrad A, Schulte C (2013) Retrospective monitoring of perfluorocarboxylates and perfluorosulfonates in human plasma archived by the German Environmental Specimen Bank. Int J Hyg Environ Health 216:633–640PubMedCrossRefGoogle Scholar
  52. 52.
    Toms LM, Thompson J, Rotander A et al (2014) Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011. Environ Int 71(C):74–80PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yeung LW, Robinson SJ, Koschorreck J, Mabury SA (2013) Part I. A temporal study of PFCAs and their precursors in human plasma from two German cities 1982-2009. Environ Sci Technol 47:3865–3874PubMedCrossRefGoogle Scholar
  54. 54.
    Yeung LW, Robinson SJ, Koschorreck J, Mabury SA (2013) Part II. A temporal study of PFOS and its precursors in human plasma from two German cities in 1982-2009. Environ Sci Technol 47:3875–3882PubMedCrossRefGoogle Scholar
  55. 55.
    Sundström M, Ehresman DJ, Bignert A et al (2011) A temporal trend study (1972-2008) of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in pooled human milk samples from Stockholm, Sweden. Environ Int 37:178–183PubMedCrossRefGoogle Scholar
  56. 56.
    Winquist A, Lally C, Shin HM, Steenland K (2013) Design, methods, and population for a study of PFOA health effects among highly exposed mid-Ohio valley community residents and workers. Environ Health Perspect 121:893–899PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    HBM-Kommission (1996) Kommission "Human-Biomonitoring" des Umweltbundesamtes: Konzept der Referenz- und Human-Biomonitoring-(HBM)-Werte in der Umweltmedizin. Bundesgesundhbl 39:221–224Google Scholar
  58. 58.
    HBM-Kommission (2014) Kommission "Human-Biomonitoring" des Umweltbundesamtes: Grundsatzpapier zur Ableitung von HBM-Werten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 57:138–147CrossRefGoogle Scholar
  59. 59.
    Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394PubMedCrossRefGoogle Scholar
  60. 60.
    Lau C (2012) Perfluorinated compounds. In: Luch A (Hrsg) Molecular, Clinical and Environmental Toxicology. Experientia Supplementum. Springer, Basel, S 47–86CrossRefGoogle Scholar
  61. 61.
    Post GB, Cohn PD, Cooper KR (2012) Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res 116:93–117PubMedCrossRefGoogle Scholar
  62. 62.
    EFSA (2014) Extensive literature search and provision of summaries of studies related to the oral toxicity of perfluoroalkylated substances (PFASs), their precursors and potential replacements in experimental animals and humans. http://www.efsa.europa.eu/de/supporting/doc/572e.pdf . Zugegriffen: 4. Dez. 2014 Google Scholar
  63. 63.
    HBM-Kommission (2016) HBM-I-Werte für Perfluoroctansäure (PFOA) und Perfluoroctansulfonsäure (PFOS) in Blutplasma - Stellungnahme der Kommission Human-Biomonitoring des Umweltbundesamtes. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 59:1362–1363CrossRefGoogle Scholar
  64. 64.
    Fei C, McLaughlin JK, Lipworth L, Olsen J (2009) Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod 24:1200–1205PubMedCrossRefGoogle Scholar
  65. 65.
    Vélez MP, Arbuckle TE, Fraser WD (2015) Maternal exposure to perfluorinated chemicals and reduced fecundity: the MIREC study. Hum Reprod 30:701–709PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Whitworth KW, Haug LS, Baird DD et al (2012) Perfluorinated compounds and subfecundity in pregnant women. Epidemiology 23:257–263PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Darrow LA, Stein CR, Steenland K (2013) Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environ Health Perspect 121:1207–1213PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Stein CR, Savitz DA, Dougan M (2009) Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol 170:837–846PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang C, Sundaram R, Maisog J, Calafat AM, Barr DB, Louis BGM (2015) A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes. Fertil Steril 103:184–189PubMedCrossRefGoogle Scholar
  70. 70.
    Apelberg BJ, Witter FR, Herbstman JB et al (2007) Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 115:1670–1676PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Fei C, McLaughlin JK, Tarone RE, Olsen J (2007) Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect 115:1677–1682PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Maisonet M, Terrell ML, McGeehin MA et al (2012) Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect 120:1432–1437PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Washino N, Saijo Y, Sasaki S et al (2009) Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect 117:660–667PubMedCrossRefGoogle Scholar
  74. 74.
    Chen MH, Ha EH, Wen TW et al (2012) Perfluorinated compounds in umbilical cord blood and adverse birth outcomes. PLoS ONE 7:e42474PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Geiger SD, Xiao J, Ducatman A, Frisbee S, Innes K, Shankar A (2014) The association between PFOA, PFOS and serum lipid levels in adolescents. Chemosphere 98:78–83PubMedCrossRefGoogle Scholar
  76. 76.
    Nelson JW, Hatch EE, Webster TF (2010) Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect 118:197–202PubMedCrossRefGoogle Scholar
  77. 77.
    Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V (2009) Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol 170:1268–1278PubMedCrossRefGoogle Scholar
  78. 78.
    Zeng XW, Qian Z, Emo B et al (2015) Association of polyfluoroalkyl chemical exposure with serum lipids in children. Sci Total Environ 512-513:364–370PubMedCrossRefGoogle Scholar
  79. 79.
    Chateau-Degat ML, Pereg D, Dallaire R, Ayotte P, Dery S, Dewailly E (2010) Effects of perfluorooctanesulfonate exposure on plasma lipid levels in the Inuit population of Nunavik (Northern Quebec). Environ Res 110:710–717PubMedCrossRefGoogle Scholar
  80. 80.
    Starling AP, Engel SM, Whitworth KW et al (2014) Perfluoroalkyl substances and lipid concentrations in plasma during pregnancy among women in the Norwegian Mother and Child Cohort Study. Environ Int 62:104–112PubMedCrossRefGoogle Scholar
  81. 81.
    Grandjean P, Andersen EW, Budtz-Jørgensen E et al (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. JAMA 307:391–397PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Grandjean P, Budtz-Jørgensen E (2013) Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health 12:35PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Granum B, Haug LS, Namork E et al (2013) Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine antibody levels and immune-related health outcomes in early childhood. J Immunotoxicol 10:373–379PubMedCrossRefGoogle Scholar
  84. 84.
    Looker C, Luster MI, Calafat AM et al (2014) Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicol Sci 138:76–88PubMedCrossRefGoogle Scholar
  85. 85.
    Kristensen SL, Ramlau-Hansen CH, Ernst E et al (2013) Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod 28:3337–3348PubMedCrossRefGoogle Scholar
  86. 86.
    Lopez-Espinosa MJ, Fletcher T, Armstrong B et al (2011) Association of perfluorooctanoic scid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol 45:8160–8166PubMedCrossRefGoogle Scholar
  87. 87.
    Lopez-Espinosa MJ, Mondal D, Armstrong BG, Eskenazi B, Fletcher T (2016) Perfluoroalkyl substances, sex hormones, and insulin-like growth factor-1 at 6-9 years of age: a cross-sectional analysis within the C8 Health Project. Environ Health Perspect 124:1269–1275PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Maisonet M, Calafat AM, Marcus M, Jaakkola JJ, Lashen H (2015) Prenatal exposure to perfluoroalkyl acids and serum testosterone concentrations at 15 years of age in female ALSPAC study participants. Environ Health Perspect 123:1325–1330PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tsai MS, Lin CY, Lin CC et al (2015) Association between perfluoroalkyl substances and reproductive hormones in adolescents and young adults. Int J Hyg Environ Health 218:437–443PubMedCrossRefGoogle Scholar
  90. 90.
    Itoh S, Araki A, Mitsui T et al (2016) Association of perfluoroalkyl substances exposure in utero with reproductive hormone levels in cord blood in the Hokkaido Study on Environment and Children's Health. Environ Int 94:51–59PubMedCrossRefGoogle Scholar
  91. 91.
    de Cock M, de Boer MR, Lamoree M, Legler J, van de Bor M (2014) Prenatal exposure to endocrine disrupting chemicals in relation to thyroid hormone levels in infants - a Dutch prospective cohort study. Environ Health 13:106PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lopez-Espinosa MJ, Mondal D, Armstrong B, Bloom MS, Fletcher T (2012) Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect 120:1036–1041PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS (2010) Association between serum perfluorooctanoic acid (PFOA) and thyroid disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 118:686–692PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Knox SS, Jackson T, Javins B, Frisbee SJ, Shankar A, Ducatman AM (2011) Implications of early menopause in women exposed to perfluorocarbons. J Clin Endocrinol Metab 96:1747–1753PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Geiger SD, Xiao J, Shankar A (2013) Positive association between perfluoroalkyl chemicals and hyperuricemia in children. Am J Epidemiol 177:1255–1262PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kataria A, Trachtman H, Malaga-Dieguez L, Trasande L (2015) Association between perfluoroalkyl acids and kidney function in a cross-sectional study of adolescents. Environ Health 14:89PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Qin XD, Qian Z, Vaughn MG et al (2016) Positive associations of serum perfluoroalkyl substances with uric acid and hyperuricemia in children from Taiwan. Environ Pollut 212:519–524PubMedCrossRefGoogle Scholar
  98. 98.
    Campbell S, Raza M, Pollack AZ (2016) Perfluoroalkyl substances and endometriosis in US women in NHANES 2003-2006. Reproductive Toxicol 65:230–235CrossRefGoogle Scholar
  99. 99.
    Louis GM, Peterson CM, Chen Z et al (2012) Perfluorochemicals and endometriosis: the ENDO study. Epidemiology 23:799–805PubMedCrossRefGoogle Scholar
  100. 100.
    Ngueta G, Longnecker MP, Yoon M et al (2017) Quantitative bias analysis of a reported association between perfluoroalkyl substances (PFAS) and endometriosis: The influence of oral contraceptive use. Environ Int 104:118–121PubMedCrossRefGoogle Scholar
  101. 101.
    Vagi SJ, Azziz-Baumgartner E, Sjodin A et al (2014) Exploring the potential association between brominated diphenyl ethers, polychlorinated biphenyls, organochlorine pesticides, perfluorinated compounds, phthalates, and bisphenol a in polycystic ovary syndrome: a case-control study. Bmc Endocr Disord 14:86PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lilienthal H, Dieter H, Hölzer J, Wilhelm M (2017) Recent experimental results of effects of perfluoroalkyl substances in laboratory animals – Relation to current regulations and guidance values. Int J Hyg Environ Health 220:766–775PubMedCrossRefGoogle Scholar
  103. 103.
    Johnson PI, Sutton P, Atchley DS et al (2014) The Navigation Guide - evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Koustas E, Lam J, Sutton P et al (2014) The Navigation Guide - evidence-based medicine meets environmental health: systematic review of nonhuman evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1015–1027PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lam J, Koustas E, Sutton P et al (2014) The Navigation Guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1040–1051PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Guruge KS, Hikono H, Shimada N et al (2009) Effect of perfluorooctane sulfonate (PFOS) on influenza A virus-induced mortality in female B6C3F1 mice. J Toxicol Sci 34:687–691PubMedCrossRefGoogle Scholar
  107. 107.
    Peden-Adams MM, Keller JM, Eudaly JG, Berger J, Gilkeson GS, Keil DE (2008) Suppression of humoral immunity in mice following exposure to perfluorooctane sulfonate. Toxicol Sci 104:144–154PubMedCrossRefGoogle Scholar
  108. 108.
    NTP (2016) Draft, systematic review of immunotoxicity associated with exposure to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS). https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf . Zugegriffen: 6. März 2017 Google Scholar
  109. 109.
    Bartell SM, Calafat AM, Lyu C, Kato K, Ryan PB, Steenland K (2010) Rate of decline in serum PFOA concentrations after granular activated carbon filtration at two public water systems in Ohio and West Virginia. Environ Health Perspect 118:222–228PubMedCrossRefGoogle Scholar
  110. 110.
    Brede E, Wilhelm M, Göen T et al (2010) Two-year follow-up biomonitoring pilot study of residents' and controls' PFC plasma levels after PFOA reduction in public water system in Arnsberg, Germany. Int J Hyg Environ Health 213:217–223PubMedCrossRefGoogle Scholar
  111. 111.
    Olsen GW, Burris JM, Ehresman DJ et al (2007) Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 115:1298–1305PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kudo N, Kawashima Y (2003) Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals. J Toxicol Sci 28:49–57PubMedCrossRefGoogle Scholar
  113. 113.
    Ohmori K, Kudo N, Katayama K, Kawashima Y (2003) Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135–140PubMedCrossRefGoogle Scholar
  114. 114.
    Dong Z, Bahar MM, Jit J et al (2017) Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid. Environ Int 105:86–94PubMedCrossRefGoogle Scholar
  115. 115.
    Food Standards Australia New Zeeland (2016) A critical review of pharmacokinetic modelling of PFOS and PFOA to assist in establishing HGBVs for these chemicals. https://www.health.gov.au/internet/main/publishing.nsf/Content/2200FE086D480353CA2580C900817CDC/ $File/7.Critical-Review-Pharmacokinetic-Modelling.pdf. Zugegriffen: 18. Jan. 2018 Google Scholar
  116. 116.
    Lau C, Thibodeaux JR, Hanson RG et al (2006) Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicol Sci 90:510–518PubMedCrossRefGoogle Scholar
  117. 117.
    Seacat AM, Thomford PJ, Hansen KJ et al (2003) Sub-chronic dietary toxicity of potassium perfluorooctanesulfonate in rats. Toxicology 183:117–131PubMedCrossRefGoogle Scholar
  118. 118.
    Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL (2002) Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci 68:249–264PubMedCrossRefGoogle Scholar
  119. 119.
    ATSDR (2015) Draft Toxicological Profile for Perfluoroalkyls. http://www.atsdr.cdc.gov/toxprofiles/tp200.pdf . Zugegriffen: 1. Juli 2017 Google Scholar
  120. 120.
    Fitz-Simon N, Fletcher T, Luster MI et al (2013) Reductions in serum lipids with a 4-year decline in serum perfluorooctanoic acid and perfluorooctanesulfonic acid. Epidemiology 24:569–576PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Taylor KW, Hoffman K, Thayer KA, Daniels JL (2014) Polyfluoroalkyl chemicals and menopause among women 20-65 years of age (NHANES). Environ Health Perspect 122:145–150PubMedCrossRefGoogle Scholar
  122. 122.
    TWK (2016) Fortschreibung der vorläufige Bewertung von Per- und polyfluorierten Chemikalien (PFC) im Trinkwasser - Begründungen. https://www.umweltbundesamt.de/sites/default/files/medien/374/dokumente/bewertung_der_konzentrationen_von_pfc_im_trinkwasser_-_wertebegruendungen.pdf . Zugegriffen: 17. März 2016 Google Scholar
  123. 123.
    HBM-Kommission (2000) Zur umweltmedizinischen Beurteilung von Human-Biomonitoring-Befunden in der ärztlichen Praxis. Umweltmed Forsch Prax 5:177–180Google Scholar
  124. 124.
    Watkins DJ, Josson J, Elston B et al (2013) Exposure to Perfluoroalkyl Acids and Markers of Kidney Function Among Children and Adolescents Living Near a Chemical Plant. Environ Health Perspect 121:625–630PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Steenland K, Tinker S, Shankar A, Ducatman A (2010) Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated community exposure to PFOA. Environ Health Perspect 118:229–233PubMedCrossRefGoogle Scholar
  126. 126.
    Shankar A, Xiao J, Ducatman A (2011) Perfluoroalkyl chemicals and elevated serum uric acid in US adults. Clin Epidemiol 3:251–258PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gleason JA, Post GB, Fagliano JA (2015) Associations of perfluorinated chemical serum concentrations and biomarkers of liver function and uric acid in the US population (NHANES), 2007-2010. Environ Res 136:8–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Umweltbundesamt
    • 1
  1. 1.Dessau-RoßlauDeutschland

Personalised recommendations