Prävention von Infektionen, die von Gefäßkathetern ausgehen

Teil 1 – Nichtgetunnelte zentralvenöse Katheter Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Wir bedanken uns bei der interdisziplinären Arbeitsgruppe der KRINKOBundesinstituts für Arzneimittel (BfArM)-RKI (Frau Prof. Dr. B. Gärtner, Frau Prof. Dr. I. Krämer, Herr M. Thanheiser, Frau Dr. A. Stoliaroff-Pepin, Herr Dr. U. Lipke, Fr. S. Matz, Prof. Dr. B. Ruf, Prof. Dr. A. Simon).


Diese Empfehlungen wurden ehrenamtlich und ohne Einflussnahme kommerzieller Interessengruppen im Auftrag der Kommission für Krankenhaushygiene und Infektionsprävention erarbeitet von Christine Geffers, Axel Kramer, Simone Scheithauer, Sebastian Schulz-Stübner, Arne Simon (Leiter der Arbeitsgruppe), Heidemarie Suger-Wiedeck und Matthias Trautmann. Die Empfehlung wurde durch die Arbeitsgruppe vorbereitet und nach ausführlicher Diskussion in der Kommission abgestimmt.

4. Literatur

  1. 1.
    Smith RN, Nolan JP (2013) Central venous catheters. BMJ 347:f6570PubMedCrossRefGoogle Scholar
  2. 2.
    Zingg W, Pittet D (2009) Peripheral venous catheters: an under-evaluated problem. Int J Antimicrob Agents 34(Suppl 4):S38–42PubMedCrossRefGoogle Scholar
  3. 3.
    Safdar N, O'Horo JC, Maki DG (2013) Arterial catheter-related bloodstream infection: incidence, pathogenesis, risk factors and prevention. J Hosp Infect 85(3):189–195PubMedCrossRefGoogle Scholar
  4. 4.
    Yokoe DS, Classen D (2008) Improving patient safety through infection control: A new healthcare imperative. Infect Control Hosp Epidemiol 29(Suppl. 1):S3–S11PubMedCrossRefGoogle Scholar
  5. 5.
    Loveday HP, Wilson JA, Pratt RJ et al (2014) epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect 86(Suppl 1):S1–S70PubMedCrossRefGoogle Scholar
  6. 6.
    Berenholtz SM, Lubomski LH, Weeks K et al (2014) Eliminating central line-associated bloodstream infections: a national patient safety imperative. Infect Control Hosp Epidemiol 35(1):56–62PubMedCrossRefGoogle Scholar
  7. 7.
    Safdar N, Fine JP, Maki DG (2005) Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 142(6):451–466PubMedCrossRefGoogle Scholar
  8. 8.
    Sherertz RJ, Heard SO, Raad II (1997) Diagnosis of triple-lumen catheter infection: comparison of roll plate, sonication, and flushing methodologies. J Clin Microbiol 35(3):641–646PubMedPubMedCentralGoogle Scholar
  9. 9.
    Blot F, Nitenberg G, Chachaty E et al (1999) Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354(9184):1071–1077PubMedCrossRefGoogle Scholar
  10. 10.
    Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J (2004) Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med 140(1):18–25PubMedCrossRefGoogle Scholar
  11. 11.
    Bowen A, Carapetis J (2011) Advances in the diagnosis and management of central venous access device infections in children. Adv Exp Med Biol 697:91–106PubMedCrossRefGoogle Scholar
  12. 12.
    Crnich CJ, Maki DG (2002) The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin Infect Dis 34(9):1232–1242PubMedCrossRefGoogle Scholar
  13. 13.
    Safdar N, Maki DG (2004) The pathogenesis of catheter-related bloodstream infection with noncuffed short-term central venous catheters. Intensive Care Med 30(1):62–67PubMedCrossRefGoogle Scholar
  14. 14.
    Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81(9):1159–1171PubMedCrossRefGoogle Scholar
  15. 15.
    Hu KK, Lipsky BA, Veenstra DL, Saint S (2004) Using maximal sterile barriers to prevent central venous catheter-related infection: a systematic evidence-based review. Am J Infect Control 32(3):142–146PubMedCrossRefGoogle Scholar
  16. 16.
    Burrell AR, McLaws ML, Murgo M, Calabria E, Pantle AC, Herkes R (2011) Aseptic insertion of central venous lines to reduce bacteraemia. Med J Aust 194(11):583–587PubMedGoogle Scholar
  17. 17.
    Small H, Adams D, Casey AL, Crosby CT, Lambert PA, Elliott T (2008) Efficacy of adding 2 % (w/v) Chlorhexidine Gluconate to 70 % (v/v) isopropyl alcohol for skin disinfection prior to peripheral venous cannulation. Infect Control Hosp Epidemiol 29(10):963–965PubMedCrossRefGoogle Scholar
  18. 18.
    Boyd S, Aggarwal I, Davey P, Logan M, Nathwani D (2011) Peripheral intravenous catheters: the road to quality improvement and safer patient care. J Hosp Infect 77(1):37–41PubMedCrossRefGoogle Scholar
  19. 19.
    Chaiyakunapruk N, Veenstra DL, Lipsky BA, Saint S (2002) Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: a meta-analysis. Ann Intern Med 136(11):792–801PubMedCrossRefGoogle Scholar
  20. 20.
    Sawyer M, Weeks K, Goeschel CA et al (2010) Using evidence, rigorous measurement, and collaboration to eliminate central catheter-associated bloodstream infections. Crit Care Med 38(8 Suppl):S292–S298PubMedCrossRefGoogle Scholar
  21. 21.
    Zingg W, Imhof A, Maggiorini M, Stocker R, Keller E, Ruef C (2009) Impact of a prevention strategy targeting hand hygiene and catheter care on the incidence of catheter-related bloodstream infections. Crit Care Med 37(7):2167–2173PubMedCrossRefGoogle Scholar
  22. 22.
    Pittet D, Hugonnet S, Harbarth S et al (2000) Effectiveness of a hospital-wide programme to improve compliance with hand hygiene. Infection Control Programme. Lancet 356(9238):1307–1312PubMedCrossRefGoogle Scholar
  23. 23.
    White CM, Statile AM, Conway PH et al (2012) Utilizing improvement science methods to improve physician compliance with proper hand hygiene. Pediatrics 129(4):e1042–e1050PubMedCrossRefGoogle Scholar
  24. 24.
    Linam WM, Margolis PA, Atherton H, Connelly BL (2011) Quality-improvement initiative sustains improvement in pediatric health care worker hand hygiene. Pediatrics 128(3):e689–e698PubMedGoogle Scholar
  25. 25.
    Austin PD, Elia M (2009) A systematic review and meta-analysis of the risk of microbial contamination of aseptically prepared doses in different environments. J Pharm Pharm Sci 12(2):233–242PubMedCrossRefGoogle Scholar
  26. 26.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2011) Anforderungen an die Hygiene bei Injektionen und Punktionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut (RKI). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 54(9/10):1135–1144Google Scholar
  27. 27.
    Douce RW, Zurita J, Sanchez O, Cardenas Aldaz P (2008) Investigation of an outbreak of central venous catheter-associated bloodstream infection due to contaminated water. Infect Control Hosp Epidemiol 29(4):364–366PubMedCrossRefGoogle Scholar
  28. 28.
    Vonberg RP, Gastmeier P (2007) Hospital-acquired infections related to contaminated substances. J Hosp Infect 65(1):15–23PubMedCrossRefGoogle Scholar
  29. 29.
    Stucki C, Sautter AM, Favet J, Bonnabry P (2009) Microbial contamination of syringes during preparation: the direct influence of environmental cleanliness and risk manipulations on end-product quality. Am J Health Syst Pharm 66(22):2032–2036PubMedCrossRefGoogle Scholar
  30. 30.
    Lorente L, Jimenez A, Naranjo C et al (2010) Higher incidence of catheter-related bacteremia in jugular site with tracheostomy than in femoral site. Infect Control Hosp Epidemiol 31(3):311–313PubMedCrossRefGoogle Scholar
  31. 31.
    Timsit JF, Bouadma L, Ruckly S et al (2012) Dressing disruption is a major risk factor for catheter-related infections. Crit Care Med 40(6):1707–1714PubMedCrossRefGoogle Scholar
  32. 32.
    Tietz A, Frei R, Dangel M et al (2005) Octenidine hydrochloride for the care of central venous catheter insertion sites in severely immunocompromised patients. Infect Control Hosp Epidemiol 26(8):703–707PubMedCrossRefGoogle Scholar
  33. 33.
    Dettenkofer M, Wilson C, Gratwohl A et al (2010) Skin disinfection with octenidine dihydrochloride for central venous catheter site care: a double-blind, randomized, controlled trial. Clin Microbiol Infect 16(6):600–606PubMedCrossRefGoogle Scholar
  34. 34.
    Dettenkofer M, Jonas D, Wiechmann C et al (2002) Effect of skin disinfection with octenidine dihydrochloride on insertion site colonization of intravascular catheters. Infection 30(5):282–285PubMedCrossRefGoogle Scholar
  35. 35.
    Luft D, Schmoor C, Wilson C et al (2010) Central venous catheter-associated bloodstream infection and colonisation of insertion site and catheter tip. What are the rates and risk factors in haematology patients? Ann Hematol 89(12):1265–1275PubMedCrossRefGoogle Scholar
  36. 36.
    Timsit JF, Schwebel C, Bouadma L et al (2009) Chlorhexidine-impregnated sponges and less frequent dressing changes for prevention of catheter-related infections in critically ill adults: a randomized controlled trial. JAMA 301(12):1231–1241PubMedCrossRefGoogle Scholar
  37. 37.
    Timsit JF, Mimoz O, Mourvillier B et al (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186(12):1272–1278PubMedCrossRefGoogle Scholar
  38. 38.
    Ruschulte H, Franke M, Gastmeier P et al (2009) Prevention of central venous catheter related infections with chlorhexidine gluconate impregnated wound dressings: a randomized controlled trial. Ann Hematol 88(3):267–272PubMedCrossRefGoogle Scholar
  39. 39.
    Scheithauer S, Lewalter K, Schroder J et al (2014) Reduction of central venous line-associated bloodstream infection rates by using a chlorhexidine-containing dressing. Infection 42(1):155–159PubMedCrossRefGoogle Scholar
  40. 40.
    Ivy DD, Calderbank M, Wagner BD et al (2009) Closed-hub systems with protected connections and the reduction of risk of catheter-related bloodstream infection in pediatric patients receiving intravenous prostanoid therapy for pulmonary hypertension. Infect Control Hosp Epidemiol 30(9):823–829PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mermel LA (2011) What is the predominant source of intravascular catheter infections? Clin Infect Dis 52(2):211–212PubMedCrossRefGoogle Scholar
  42. 42.
    Nishikawa K, Takasu A, Morita K, Tsumori H, Sakamoto T (2010) Deposits on the intraluminal surface and bacterial growth in central venous catheters. J Hosp Infect 75(1):19–22PubMedCrossRefGoogle Scholar
  43. 43.
    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881–890PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kubiak DW, Gilmore ET, Buckley MW, Lynch R, Marty FM, Koo S (2014) Adjunctive management of central line-associated bloodstream infections with 70 % ethanol-lock therapy. J Antimicrob Chemother 69(6):1665–1668PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Vergidis P, Patel R (2012) Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am 26(1):173–186PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Donlan RM (2011) Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52(8):1038–1045PubMedCrossRefGoogle Scholar
  47. 47.
    Balestrino D, Souweine B, Charbonnel N et al (2009) Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution. Nephrol Dial Transplant 24(10):3204–3209PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang L, Gowardman J, Morrison M, Krause L, Playford EG, Rickard CM (2014) Molecular investigation of bacterial communities on intravascular catheters: no longer just Staphylococcus. Eur J Clin Microbiol Infect Dis 33(7):1189–1198PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang L, Morrison M, Nimmo GR et al (2013) Molecular investigation of bacterial communities on the inner and outer surfaces of peripheral venous catheters. Eur J Clin Microbiol Infect Dis 32(8):1083–1090PubMedCrossRefGoogle Scholar
  50. 50.
    Zhang L, Sriprakash KS, McMillan D, Gowardman JR, Patel B, Rickard CM (2010) Microbiological pattern of arterial catheters in the intensive care unit. BMC Microbiol 10:266PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ekkelenkamp MB, van der Bruggen T, van de Vijver DA, Wolfs TF, Bonten MJ (2008) Bacteremic complications of intravascular catheters colonized with Staphylococcus aureus. Clin Infect Dis 46(1):114–118PubMedCrossRefGoogle Scholar
  52. 52.
    Hetem DJ, Woerdeman PA, Bonten MJ, Ekkelenkamp MB (2010) Relationship between bacterial colonization of external cerebrospinal fluid drains and secondary meningitis: a retrospective analysis of an 8-year period. J Neurosurg 113(6):1309–1313PubMedCrossRefGoogle Scholar
  53. 53.
    Hetem DJ, de Ruiter SC, Buiting AG et al (2011) Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine (Baltimore) 90(4):284–288CrossRefGoogle Scholar
  54. 54.
    Salgado CD (2008) The risk of developing a vancomycin-resistant Enterococcus bloodstream infection for colonized patients. Am J Infect Control 36(10):175.e5–175.e8CrossRefGoogle Scholar
  55. 55.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2002) Prävention Gefäßkatheter-assoziierter Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsblatt 25(11):907–924Google Scholar
  56. 56.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2007) Empfehlung zur Prävention nosokomialer Infektionen bei neonatologischen Intensivpflegepatienten mit einem Geburtsgewicht unter 1500 g. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Bundesgesundheitsblatt 50(10):1265–1303CrossRefGoogle Scholar
  57. 57.
    Hentrich M, Schalk E, Schmidt-Hieber M et al (2014) Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol 25(5):936–947PubMedCrossRefGoogle Scholar
  58. 58.
    Simon A, Graf N, Furtwangler R (2013) Results of a multicentre survey evaluating clinical practice of port and broviac management in paediatric oncology. Klin Padiatr 225(3):145–151PubMedCrossRefGoogle Scholar
  59. 59.
    Simon A, Beutel K, Trautmann M, Greiner J, Graf N (2013) Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der pädiatrischen Onkologie, 4. Aufl. mhp, WiesbadenGoogle Scholar
  60. 60.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Die Kategorien in der Richtlinie für Krankenhaushygiene und Infektionsprävention. Aktualisierung der Definitionen Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsblatt 53(7):754–756CrossRefGoogle Scholar
  61. 61.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI) und des Bundesinstitutes für Arzneimittel und Medizinprodukte (BfArM). Bundesgesundheitsblatt 55(10):1244–1310CrossRefGoogle Scholar
  62. 62.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI). Bundesgesundheitsblatt 59(9):1189–1220CrossRefGoogle Scholar
  63. 63.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2009) Personelle und organisatorische Voraussetzungen zur Prävention nosokomialer Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention. Bundesgesundheitsblatt 53(9):951–962Google Scholar
  64. 64.
    Dixon-Woods M, Bosk CL, Aveling EL, Goeschel CA, Pronovost PJ (2011) Explaining Michigan: developing an ex post theory of a quality improvement program. Milbank Q 89(2):167–205PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Umscheid CA, Mitchell MD, Doshi JA, Agarwal R, Williams K, Brennan PJ (2011) Estimating the proportion of healthcare-associated infections that are reasonably preventable and the related mortality and costs. Infect Control Hosp Epidemiol 32(2):101–114PubMedCrossRefGoogle Scholar
  66. 66.
    Marschall J, Mermel LA, Fakih M et al (2014) Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35(7):753–771PubMedCrossRefGoogle Scholar
  67. 67.
    O'Grady NP, Alexander M, Burns LA et al (2011) Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39(4 Suppl 1):S1–S34PubMedCrossRefGoogle Scholar
  68. 68.
    Berenholtz SM, Pronovost PJ, Lipsett PA et al (2004) Eliminating catheter-related bloodstream infections in the intensive care unit. Crit Care Med 32(10):2014–2020PubMedCrossRefGoogle Scholar
  69. 69.
    Sagana R, Hyzy RC (2013) Achieving zero central line-associated bloodstream infection rates in your intensive care unit. Crit Care Clin 29(1):1–9PubMedCrossRefGoogle Scholar
  70. 70.
    Khalid I, Al Salmi H, Qushmaq I, Al Hroub M, Kadri M, Qabajah MR (2013) Itemizing the bundle: achieving and maintaining „zero“ central line-associated bloodstream infection for over a year in a tertiary care hospital in Saudi Arabia. Am J Infect Control 41(12):1209–1213PubMedCrossRefGoogle Scholar
  71. 71.
    Worth LJ, McLaws ML (2012) Is it possible to achieve a target of zero central line associated bloodstream infections? Curr Opin Infect Dis 25(6):650–657PubMedCrossRefGoogle Scholar
  72. 72.
    Southworth SL, Henman LJ, Kinder LA, Sell JL (2012) The journey to zero central catheter-associated bloodstream infections: culture change in an intensive care unit. Crit Care Nurse 32(2):49–54PubMedCrossRefGoogle Scholar
  73. 73.
    Secola R, Lewis MA, Pike N, Needleman J, Doering L (2012) „Targeting to zero“ in pediatric oncology: a review of central venous catheter-related bloodstream infections. J Pediatr Oncol Nurs 29(1):14–27PubMedCrossRefGoogle Scholar
  74. 74.
    Raad II (2008) Commentary: zero tolerance for catheter-related bloodstream infections: the unnegotiable objective. Infect Control Hosp Epidemiol 29(10):951–953PubMedCrossRefGoogle Scholar
  75. 75.
    Centers for Disease Control and Prevention (CDC) (2011) Vital signs: central line associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep 60(8):243–248Google Scholar
  76. 76.
    Deutsche Gesellschaft für Infektiologie e. V. (DGI), Bundesverband Deutscher Krankenhausapotheker e. V. (ADKA), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM), Deutsche Gesellschaft für Infektiologie e. V. (DGI), Bundesverband Deutscher Krankenhausapotheker e. V. (ADKA), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM) (2013) S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092/001Google Scholar
  77. 77.
    Parienti JJ, Mongardon N, Megarbane B et al (2015) Intravascular complications of central venous catheterization by insertion site. N Engl J Med 373(13):1220–1229PubMedCrossRefGoogle Scholar
  78. 78.
    Garnacho-Montero J, Aldabo-Pallas T, Palomar-Martinez M et al (2008) Risk factors and prognosis of catheter-related bloodstream infection in critically ill patients: a multicenter study. Intensive Care Med 34(12):2185–2193PubMedCrossRefGoogle Scholar
  79. 79.
    Gastmeier P, Sohr D, Geffers C, Behnke M, Ruden H (2007) Risk factors for death due to nosocomial infection in intensive care unit patients: findings from the Krankenhaus Infektions Surveillance System. Infect Control Hosp Epidemiol 28(4):466–472PubMedCrossRefGoogle Scholar
  80. 80.
    Chopra V, O'Horo JC, Rogers MA, Maki DG, Safdar N (2013) The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 34(9):908–918PubMedCrossRefGoogle Scholar
  81. 81.
    Zingg W, Sax H, Inan C et al (2009) Hospital-wide surveillance of catheter-related bloodstream infection: from the expected to the unexpected. J Hosp Infect 73(1):41–46PubMedCrossRefGoogle Scholar
  82. 82.
    Zingg W, Cartier V, Inan C et al (2014) Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection. PLOS ONE 9(4):e93898PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013Google Scholar
  84. 84.
    Gastmeier P, Geffers C (2008) [Nosocomial infections in Germany. What are the numbers, based on the estimates for 2006?] Dtsch Med Wochenschr 133(21):1111–1115PubMedCrossRefGoogle Scholar
  85. 85.
    Geffers C, Gastmeier P (2009) Häufigkeit und Vermeidbarkeit nosokomialer Infektionen in der Intensivmedizin. Intensiv-News 4:20–21Google Scholar
  86. 86.
    Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P (2009) Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect 72(2):97–103PubMedCrossRefGoogle Scholar
  87. 87.
    Schroder C, Schwab F, Behnke M et al (2015) Epidemiology of healthcare associated infections in Germany: Nearly 20 years of surveillance. Int J Med Microbiol 305(7):799–806PubMedCrossRefGoogle Scholar
  88. 88.
    Grisaru-Soen G, Sweed Y, Lerner-Geva L et al (2007) Nosocomial bloodstream infections in a pediatric intensive care unit: 3-year survey. Med Sci Monit 13(6):CR251–CR257PubMedGoogle Scholar
  89. 89.
    Grisaru-Soen G, Paret G, Yahav D, Boyko V, Lerner-Geva L (2009) Nosocomial infections in pediatric cardiovascular surgery patients: A 4-year survey. Pediatr Crit Care Med 10(2):202–206PubMedCrossRefGoogle Scholar
  90. 90.
    Urrea M, Pons M, Serra M, Latorre C, Palomeque A (2003) Prospective incidence study of nosocomial infections in a pediatric intensive care unit. Pediatr Infect Dis J 22(6):490–494PubMedGoogle Scholar
  91. 91.
    Yogaraj JS, Elward AM, Fraser VJ (2002) Rate, risk factors, and outcomes of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 110(3):481–485PubMedCrossRefGoogle Scholar
  92. 92.
    Elward AM, Fraser VJ (2006) Risk factors for nosocomial primary bloodstream infection in pediatric intensive care unit patients: a 2-year prospective cohort study. Infect Control Hosp Epidemiol 27(6):553–560PubMedCrossRefGoogle Scholar
  93. 93.
    Wylie MC, Graham DA, Potter-Bynoe G et al (2010) Risk factors for central line-associated bloodstream infection in pediatric intensive care units. Infect Control Hosp Epidemiol 31(10):1049–1056PubMedCrossRefGoogle Scholar
  94. 94.
    Niedner MF, Huskins WC, Colantuoni E et al (2011) Epidemiology of central line-associated bloodstream infections in the pediatric intensive care unit. Infect Control Hosp Epidemiol 32(12):1200–1208PubMedCrossRefGoogle Scholar
  95. 95.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013. PädiatrischGoogle Scholar
  96. 96.
    Geffers C, Bärwolff S, Schwab F, Rüden H, Gastmeier P (2005) Surveillance nosokomialer Infektionen auf pädiatrischen und neonatologischen Intensivstationen in Deutschland. Pädiatr Prax 66:73–82Google Scholar
  97. 97.
    Mitt P, Metsvaht T, Adamson V et al (2014) Five-year prospective surveillance of nosocomial bloodstream infections in an Estonian paediatric intensive care unit. J Hosp Infect 86(2):95–99PubMedCrossRefGoogle Scholar
  98. 98.
    Geffers C, Schwab F, Gastmeier P (2009) Nosokomiale Infektionen bei pädiatrischen Intensivpflegepatienten – Daten aus ITS-KISS. Hyg Med 34(9):336–342Google Scholar
  99. 99.
    Dresbach T, Prusseit J, Breuer J, Simon A (2009) Incidence of nosocomial infections in children undergoing cardiac surgery. Rev Med Microbiol 20(4):74–83CrossRefGoogle Scholar
  100. 100.
    Costello JM, Morrow DF, Graham DA, Potter-Bynoe G, Sandora TJ, Laussen PC (2008) Systematic intervention to reduce central line-associated bloodstream infection rates in a pediatric cardiac intensive care unit. Pediatrics 121(5):915–923PubMedCrossRefGoogle Scholar
  101. 101.
    Bezzio S, Scolfaro C, Broglia R et al (2009) Prospective incidence study of bloodstream infection in infants and children with central venous catheters after cardiac surgery in Italy. Infect Control Hosp Epidemiol 30(7):698–701PubMedCrossRefGoogle Scholar
  102. 102.
    Sheridan RL, Weber JM (2006) Mechanical and infectious complications of central venous cannulation in children: lessons learned from a 10-year experience placing more than 1000 catheters. J Burn Care Res 27(5):713–718PubMedCrossRefGoogle Scholar
  103. 103.
    Sheridan RL (2005) Sepsis in pediatric burn patients. Pediatr Crit Care Med 6(3 Suppl):S112–S119PubMedCrossRefGoogle Scholar
  104. 104.
    Goldstein AM, Weber JM, Sheridan RL (1997) Femoral venous access is safe in burned children: an analysis of 224 catheters. J Pediatr 130(3):442–446PubMedCrossRefGoogle Scholar
  105. 105.
    Sheridan RL, Neely AN, Castillo MA et al (2012) A survey of invasive catheter practices in U.S. burn centers. J Burn Care Res 33(6):741–746PubMedCrossRefGoogle Scholar
  106. 106.
    Gastmeier P, Weigt O, Sohr D, Ruden H (2002) Comparison of hospital-acquired infection rates in paediatric burn patients. J Hosp Infect 52(3):161–165PubMedCrossRefGoogle Scholar
  107. 107.
    Weber JM, Sheridan RL, Fagan S, Ryan CM, Pasternack MS, Tompkins RG (2012) Incidence of catheter-associated bloodstream infection after introduction of minocycline and rifampin antimicrobial-coated catheters in a pediatric burn population. J Burn Care Res 33(4):539–543PubMedCrossRefGoogle Scholar
  108. 108.
    Dudeck MA, Weiner LM, Allen-Bridson K et al (2013) National Healthcare Safety Network (NHSN) report, data summary for 2012, Device-associated module. Am J Infect Control 41(12):1148–1166PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul ITS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013. BrandverletzteGoogle Scholar
  110. 110.
    Chittick P, Sherertz RJ (2010) Recognition and prevention of nosocomial vascular device and related bloodstream infections in the intensive care unit. Crit Care Med 38(8 Suppl):S363–S372PubMedCrossRefGoogle Scholar
  111. 111.
    Pronovost PJ, Goeschel CA, Colantuoni E et al (2010) Sustaining reductions in catheter related bloodstream infections in Michigan intensive care units: observational study. BMJ 340:c309PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355(26):2725–2732PubMedCrossRefGoogle Scholar
  113. 113.
    Climo M, Diekema D, Warren DK et al (2003) Prevalence of the use of central venous access devices within and outside of the intensive care unit: results of a survey among hospitals in the prevention epicenter program of the Centers for Disease Control and Prevention. Infect Control Hosp Epidemiol 24(12):942–945PubMedCrossRefGoogle Scholar
  114. 114.
    Vonberg RP, Behnke M, Geffers C et al (2006) Device-associated infection rates for non-intensive care unit patients. Infect Control Hosp Epidemiol 27(4):357–361PubMedCrossRefGoogle Scholar
  115. 115.
    Marschall J, Leone C, Jones M, Nihill D, Fraser VJ, Warren DK (2007) Catheter-associated bloodstream infections in general medical patients outside the intensive care unit: a surveillance study. Infect Control Hosp Epidemiol 28(8):905–909PubMedCrossRefGoogle Scholar
  116. 116.
    Kallen AJ, Patel PR, O'Grady NP (2010) Preventing catheter-related bloodstream infections outside the intensive care unit: expanding prevention to new settings. Clin Infect Dis 51(3):335–341PubMedCrossRefGoogle Scholar
  117. 117.
    Son CH, Daniels TL, Eagan JA et al (2012) Central line-associated bloodstream infection surveillance outside the intensive care unit: a multicenter survey. Infect Control Hosp Epidemiol 33(9):869–874PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (Hrsg) (2014) KISS Krankenhaus-Infektions-Surveillance-System. Infektionssurveillance im Modul STATIONS-KISS. Referenzdaten. Berechnungszeitraum: Januar 2009 bis Dezember 2013Google Scholar
  119. 119.
    Freixas N, Bella F, Limon E, Pujol M, Almirante B, Gudiol F (2013) Impact of a multimodal intervention to reduce bloodstream infections related to vascular catheters in non-ICU wards: a multicentre study. Clin Microbiol Infect 19(9):838–844PubMedCrossRefGoogle Scholar
  120. 120.
    Medina A, Serratt T, Pelter M, Brancamp T (2014) Decreasing central line-associated bloodstream infections in the non-ICU population. J Nurs Care Qual 29(2):133–140PubMedCrossRefGoogle Scholar
  121. 121.
    Klintworth G, Stafford J, O'Connor M et al (2014) Beyond the intensive care unit bundle: Implementation of a successful hospital-wide initiative to reduce central line-associated bloodstream infections. Am J Infect Control 42(6):685–687PubMedCrossRefGoogle Scholar
  122. 122.
    Cotogni P, Pittiruti M, Barbero C, Monge T, Palmo A, Boggio Bertinet D (2013) Catheter-related complications in cancer patients on home parenteral nutrition: a prospective study of over 51,000 catheter days. JPEN J Parenter Enteral Nutr 37(3):375–383PubMedCrossRefGoogle Scholar
  123. 123.
    Drews BB, Sanghavi R, Siegel JD, Metcalf P, Mittal NK (2009) Characteristics of catheter-related bloodstream infections in children with intestinal failure: implications for clinical management. Gastroenterol Nurs 32(6):385–390PubMedCrossRefGoogle Scholar
  124. 124.
    Piper HG, Wales PW (2013) Prevention of catheter-related blood stream infections in children with intestinal failure. Curr Opin Gastroenterol 29(1):1–6PubMedCrossRefGoogle Scholar
  125. 125.
    Piper HG, de Silva NT, Amaral JG, Avitzur Y, Wales PW (2013) Peripherally inserted central catheters for long-term parenteral nutrition in infants with intestinal failure. J Pediatr Gastroenterol Nutr 56(5):578–581PubMedCrossRefGoogle Scholar
  126. 126.
    Buchman AL, Opilla M, Kwasny M, Diamantidis TG, Okamoto R (2014) Risk factors for the development of catheter-related bloodstream infections in patients receiving home parenteral nutrition. JPEN J Parenter Enteral Nutr 38(6):744–749PubMedCrossRefGoogle Scholar
  127. 127.
    Gillanders L, Angstmann K, Ball P et al (2012) A prospective study of catheter-related complications in HPN patients. Clin Nutr 31(1):30–34PubMedCrossRefGoogle Scholar
  128. 128.
    Simon A, Schmitt-Grohe S, Erdmann U et al (2012) Anforderungen an die Hygiene bei der medizinischen Versorgung von Patienten mit Cystischer Fibrose (Mukoviszidose). mhp, WiesbadenGoogle Scholar
  129. 129.
    Cargill J, Etherington C, Peckham D, Conway S, Denton M (2012) Bloodstream infections in cystic fibrosis: nine years of experience in both adults and children. J Cyst Fibros 11(4):337–339PubMedCrossRefGoogle Scholar
  130. 130.
    Decker BK, Palmore TN (2013) The role of water in healthcare-associated infections. Curr Opin Infect Dis 26(4):345–351PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kline S, Cameron S, Streifel A et al (2004) An outbreak of bacteremias associated with Mycobacterium mucogenicum in a hospital water supply. Infect Control Hosp Epidemiol 25(12):1042–1049PubMedCrossRefGoogle Scholar
  132. 132.
    Exner M, Kramer A, Lajoie L, Gebel J, Engelhart S, Hartemann P (2005) Prevention and control of health care-associated waterborne infections in health care facilities. Am J Infect Control 33(5 Suppl 1):S26–S40PubMedCrossRefGoogle Scholar
  133. 133.
    Trautmann M, Lepper PM, Haller M (2005) Ecology of Pseudomonas aeruginosa in the intensive care unit and the evolving role of water outlets as a reservoir of the organism. Am J Infect Control 33(5 Suppl 1):S41–S49PubMedCrossRefGoogle Scholar
  134. 134.
    Trautmann M, Halder S, Hoegel J, Royer H, Haller M (2008) Point-of-use water filtration reduces endemic Pseudomonas aeruginosa infections on a surgical intensive care unit. Am J Infect Control 36(6):421–429PubMedCrossRefGoogle Scholar
  135. 135.
    Toscano CM, Bell M, Zukerman C et al (2009) Gram-negative bloodstream infections in hematopoietic stem cell transplant patients: the roles of needleless device use, bathing practices, and catheter care. Am J Infect Control 37(4):327–334PubMedCrossRefGoogle Scholar
  136. 136.
    Schneider H, Geginat G, Hogardt M et al (2012) Pseudomonas aeruginosa outbreak in a pediatric oncology care unit caused by an errant water jet into contaminated siphons. Pediatr Infect Dis J 31(6):648–650PubMedCrossRefGoogle Scholar
  137. 137.
    Hota S, Hirji Z, Stockton K et al (2009) Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol 30(1):25–33PubMedCrossRefGoogle Scholar
  138. 138.
    Pittet D, Wenzel RP (1995) Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med 155(11):1177–1184PubMedCrossRefGoogle Scholar
  139. 139.
    Gastmeier P, Sohr D, Geffers C, Zuschneid I, Behnke M, Ruden H (2005) [Mortality in German intensive care units: dying from or with a nosocomial infection?] Anasthesiol Intensivmed Notfallmed Schmerzther 40(5):267–272PubMedCrossRefGoogle Scholar
  140. 140.
    Blot SI, Depuydt P, Annemans L et al (2005) Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 41(11):1591–1598PubMedCrossRefGoogle Scholar
  141. 141.
    Slonim AD, Kurtines HC, Sprague BM, Singh N (2001) The costs associated with nosocomial bloodstream infections in the pediatric intensive care unit. Pediatr Crit Care Med 2(2):170–174PubMedCrossRefGoogle Scholar
  142. 142.
    Niven DJ, Fick GH, Kirkpatrick AW, Grant V, Laupland KB (2010) Cost and outcomes of nosocomial bloodstream infections complicating major traumatic injury. J Hosp Infect 76(4):296–299PubMedCrossRefGoogle Scholar
  143. 143.
    Kaye KS, Marchaim D, Chen TY et al (2014) Effect of nosocomial bloodstream infections on mortality, length of stay, and hospital costs in older adults. J Am Geriatr Soc 62(2):306–311PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26(2):166–174PubMedCrossRefGoogle Scholar
  145. 145.
    Cosgrove SE (2006) The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 42(Suppl 2):S82–S89PubMedCrossRefGoogle Scholar
  146. 146.
    Ziegler MJ, Pellegrini DC, Safdar N (2015) Attributable mortality of central line associated bloodstream infection: systematic review and meta-analysis. Infection 43(1):29–36PubMedCrossRefGoogle Scholar
  147. 147.
    Elward AM, Hollenbeak CS, Warren DK, Fraser VJ (2005) Attributable cost of nosocomial primary bloodstream infection in pediatric intensive care unit patients. Pediatrics 115(4):868–872PubMedCrossRefGoogle Scholar
  148. 148.
    Shannon RP, Patel B, Cummins D, Shannon AH, Ganguli G, Lu Y (2006) Economics of central line-associated bloodstream infections. Am J Med Qual 21(6 Suppl):7S–16SPubMedCrossRefGoogle Scholar
  149. 149.
    Kim JS, Holtom P, Vigen C (2011) Reduction of catheter-related bloodstream infections through the use of a central venous line bundle: epidemiologic and economic consequences. Am J Infect Control 39(8):640–646PubMedCrossRefGoogle Scholar
  150. 150.
    Warren DK, Quadir WW, Hollenbeak CS, Elward AM, Cox MJ, Fraser VJ (2006) Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med 34(8):2084–2089PubMedCrossRefGoogle Scholar
  151. 151.
    Mittmann N, Koo M, Daneman N et al (2012) The economic burden of patient safety targets in acute care: a systematic review. Drug Healthc Patient Saf 4:141–165PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Leistner R, Hirsemann E, Bloch A, Gastmeier P, Geffers C (2014) Costs and prolonged length of stay of central venous catheter-associated bloodstream infections (CVC BSI): a matched prospective cohort study. Infection 42(1):31–36PubMedCrossRefGoogle Scholar
  153. 153.
    Wright MO, Tropp J, Schora DM et al (2013) Continuous passive disinfection of catheter hubs prevents contamination and bloodstream infection. Am J Infect Control 41(1):33–38PubMedCrossRefGoogle Scholar
  154. 154.
    Nowak JE, Brilli RJ, Lake MR et al (2010) Reducing catheter-associated bloodstream infections in the pediatric intensive care unit: Business case for quality improvement. Pediatr Crit Care Med 11(5):579–587PubMedCrossRefGoogle Scholar
  155. 155.
    Tarricone R, Torbica A, Franzetti F, Rosenthal VD (2010) Hospital costs of central line-associated bloodstream infections and cost-effectiveness of closed vs. open infusion containers. The case of Intensive Care Units in Italy. Cost Eff Resour Alloc 8:8PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Hugonnet S, Harbarth S, Sax H, Duncan RA, Pittet D (2004) Nursing resources: a major determinant of nosocomial infection? Curr Opin Infect Dis 17(4):329–333PubMedCrossRefGoogle Scholar
  157. 157.
    Hugonnet S, Chevrolet JC, Pittet D (2007) The effect of workload on infection risk in critically ill patients. Crit Care Med 35(1):76–81PubMedCrossRefGoogle Scholar
  158. 158.
    Fridkin SK, Pear SM, Williamson TH, Galgiani JN, Jarvis WR (1996) The role of understaffing in central venous catheter-associated bloodstream infections. Infect Control Hosp Epidemiol 17(3):150–158PubMedCrossRefGoogle Scholar
  159. 159.
    Needleman J, Buerhaus P, Mattke S, Stewart M, Zelevinsky K (2002) Nurse-staffing levels and the quality of care in hospitals. N Engl J Med 346(22):1715–1722PubMedCrossRefGoogle Scholar
  160. 160.
    Assadian O, Toma CD, Rowley SD (2007) Implications of staffing ratios and workload limitations on healthcare-associated infections and the quality of patient care. Crit Care Med 35(1):296–298PubMedCrossRefGoogle Scholar
  161. 161.
    Archibald LK, Manning ML, Bell LM, Banerjee S, Jarvis WR (1997) Patient density, nurse-to-patient ratio and nosocomial infection risk in a pediatric cardiac intensive care unit. Pediatr Infect Dis J 16(11):1045–1048PubMedCrossRefGoogle Scholar
  162. 162.
    Stone PW, Pogorzelska M, Kunches L, Hirschhorn LR (2008) Hospital staffing and health care-associated infections: a systematic review of the literature. Clin Infect Dis 47(7):937–944PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Robert J, Fridkin SK, Blumberg HM et al (2000) The influence of the composition of the nursing staff on primary bloodstream infection rates in a surgical intensive care unit. Infect Control Hosp Epidemiol 21(1):12–17PubMedCrossRefGoogle Scholar
  164. 164.
    Penoyer DA (2010) Nurse staffing and patient outcomes in critical care: a concise review. Crit Care Med 38(7):1521–1528PubMedCrossRefGoogle Scholar
  165. 165.
    Cho SH, June KJ, Kim YM et al (2009) Nurse staffing, quality of nursing care and nurse job outcomes in intensive care units. J Clin Nurs 18(12):1729–1737PubMedCrossRefGoogle Scholar
  166. 166.
    Alonso-Echanove J, Edwards JR, Richards MJ et al (2003) Effect of nurse staffing and antimicrobial-impregnated central venous catheters on the risk for bloodstream infections in intensive care units. Infect Control Hosp Epidemiol 24(12):916–925PubMedCrossRefGoogle Scholar
  167. 167.
    Aktionsbündnis Patientensicherheit (APS), Aktion Saubere Hände (ASH), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM) et al (Hrsg) (2015) Infektionsprävention – Prävention – Initiative (IPI). Infektionsprävention und PflegepersonalausstattungGoogle Scholar
  168. 168.
    Zingg W, Holmes A, Dettenkofer M et al (2015) Hospital organisation, management, and structure for prevention of health-care-associated infection: a systematic review and expert consensus. Lancet Infect Dis 15(2):212–224PubMedCrossRefGoogle Scholar
  169. 169.
    Cimiotti JP, Aiken LH, Sloane DM, Wu ES (2012) Nurse staffing, burnout, and health care-associated infection. Am J Infect Control 40(6):486–490PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Resar RK (2006) Making noncatastrophic health care processes reliable: Learning to walk before running in creating high-reliability organizations. Health Serv Res 41(4 Pt 2):1677–1689PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Schwab F, Meyer E, Geffers C, Gastmeier P (2011) Understaffing, overcrowding, inappropriate nurse:ventilated patient ratio and nosocomial infections: which parameter is the best reflection of deficits? J Hosp Infect 80(2):133–139PubMedCrossRefGoogle Scholar
  172. 172.
    Clements A, Halton K, Graves N et al (2008) Overcrowding and understaffing in modern health-care systems: key determinants in meticillin-resistant Staphylococcus aureus transmission. Lancet Infect Dis 8(7):427–434PubMedCrossRefGoogle Scholar
  173. 173.
    Sax H, Allegranzi B, Uckay I, Larson E, Boyce J, Pittet D (2007) 'My five moments for hand hygiene': a user-centred design approach to understand, train, monitor and report hand hygiene. J Hosp Infect 67(1):9–21PubMedCrossRefGoogle Scholar
  174. 174.
    Reichardt C, Koniger D, Bunte-Schonberger K et al (2013) Three years of national hand hygiene campaign in Germany: what are the key conclusions for clinical practice? J Hosp Infect 83(Suppl 1):S11–S16PubMedCrossRefGoogle Scholar
  175. 175.
    Pittet D (2000) Improving compliance with hand hygiene in hospitals. Infect Control Hosp Epidemiol 21(6):381–386PubMedCrossRefGoogle Scholar
  176. 176.
    Pittet D, Simon A, Hugonnet S, Pessoa-Silva CL, Sauvan V, Perneger TV (2004) Hand hygiene among physicians: performance, beliefs, and perceptions. Ann Intern Med 141(1):1–8PubMedCrossRefGoogle Scholar
  177. 177.
    Rosenthal VD, Guzman S, Safdar N (2005) Reduction in nosocomial infection with improved hand hygiene in intensive care units of a tertiary care hospital in Argentina. Am J Infect Control 33(7):392–397PubMedCrossRefGoogle Scholar
  178. 178.
    Mernelius S, Svensson PO, Rensfeldt G et al (2012) Compliance with hygiene guidelines: the effect of a multimodal hygiene intervention and validation of direct observations. Am J Infect Control 41(5):e45–e48CrossRefGoogle Scholar
  179. 179.
    Edwards R, Charani E, Sevdalis N et al (2012) Optimisation of infection prevention and control in acute health care by use of behaviour change: a systematic review. Lancet Infect Dis 12(4):318–329PubMedCrossRefGoogle Scholar
  180. 180.
    Pittet D (2004) The Lowbury lecture: behaviour in infection control. J Hosp Infect 58(1):1–13PubMedCrossRefGoogle Scholar
  181. 181.
    Raad II, Hohn DC, Gilbreath BJ et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15(4 Pt 1):231–238PubMedCrossRefGoogle Scholar
  182. 182.
    Lee DH, Jung KY, Choi YH (2008) Use of maximal sterile barrier precautions and/or antimicrobial-coated catheters to reduce the risk of central venous catheter-related bloodstream infection. Infect Control Hosp Epidemiol 29(10):947–950PubMedCrossRefGoogle Scholar
  183. 183.
    Young EM, Commiskey ML, Wilson SJ (2006) Translating evidence into practice to prevent central venous catheter-associated bloodstream infections: a systems-based intervention. Am J Infect Control 34(8):503–506PubMedCrossRefGoogle Scholar
  184. 184.
    Ishikawa Y, Kiyama T, Haga Y et al (2010) Maximal sterile barrier precautions do not reduce catheter-related bloodstream infections in general surgery units: a multi-institutional randomized controlled trial. Ann Surg 251(4):620–623PubMedCrossRefGoogle Scholar
  185. 185.
    Kim CS, Spahlinger DA, Kin JM, Coffey RJ, Billi JE (2009) Implementation of lean thinking: one health system's journey. Jt Comm J Qual Patient Saf 35(8):406–413PubMedCrossRefGoogle Scholar
  186. 186.
    Barsuk JH, Cohen ER, Feinglass J, McGaghie WC, Wayne DB (2009) Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med 169(15):1420–1423PubMedCrossRefGoogle Scholar
  187. 187.
    Barsuk JH, Cohen ER, McGaghie WC, Wayne DB (2010) Long-term retention of central venous catheter insertion skills after simulation-based mastery learning. Acad Med 85(10 Suppl):S9–S12PubMedCrossRefGoogle Scholar
  188. 188.
    Barsuk JH, McGaghie WC, Cohen ER, O'Leary KJ, Wayne DB (2009) Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit. Crit Care Med 37(10):2697–2701PubMedGoogle Scholar
  189. 189.
    Ma IW, Brindle ME, Ronksley PE, Lorenzetti DL, Sauve RS, Ghali WA (2011) Use of simulation-based education to improve outcomes of central venous catheterization: a systematic review and meta-analysis. Acad Med 86(9):1137–1147PubMedCrossRefGoogle Scholar
  190. 190.
    Evans LV, Dodge KL, Shah TD et al (2010) Simulation training in central venous catheter insertion: improved performance in clinical practice. Acad Med 85(9):1462–1469PubMedCrossRefGoogle Scholar
  191. 191.
    Latif RK, Bautista AF, Memon SB et al (2012) Teaching aseptic technique for central venous access under ultrasound guidance: a randomized trial comparing didactic training alone to didactic plus simulation-based training. Anesth Analg 114(3):626–633PubMedCrossRefGoogle Scholar
  192. 192.
    Burden AR, Torjman MC, Dy GE et al (2012) Prevention of central venous catheter-related bloodstream infections: is it time to add simulation training to the prevention bundle? J Clin Anesth 24(7):555–560PubMedCrossRefGoogle Scholar
  193. 193.
    Khouli H, Jahnes K, Shapiro J et al (2011) Performance of medical residents in sterile techniques during central vein catheterization: randomized trial of efficacy of simulation-based training. Chest 139(1):80–87PubMedCrossRefGoogle Scholar
  194. 194.
    Karakitsos D, Labropoulos N, De Groot E et al (2006) Real-time ultrasound-guided catheterisation of the internal jugular vein: a prospective comparison with the landmark technique in critical care patients. Crit Care 10(6):R162PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Hayashi H, Amano M (2002) Does ultrasound imaging before puncture facilitate internal jugular vein cannulation? Prospective randomized comparison with landmark-guided puncture in ventilated patients. J Cardiothorac Vasc Anesth 16(5):572–575PubMedCrossRefGoogle Scholar
  196. 196.
    Martin MJ, Husain FA, Piesman M et al (2004) Is routine ultrasound guidance for central line placement beneficial? A prospective analysis. Curr Surg 61(1):71–74PubMedCrossRefGoogle Scholar
  197. 197.
    Froehlich CD, Rigby MR, Rosenberg ES et al (2009) Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med 37(3):1090–1096PubMedCrossRefGoogle Scholar
  198. 198.
    Cartier V, Haenny A, Inan C, Walder B, Zingg W (2014) No association between ultrasound-guided insertion of central venous catheters and bloodstream infection: a prospective observational study. J Hosp Infect 87(2):103–108PubMedCrossRefGoogle Scholar
  199. 199.
    Ge X, Cavallazzi R, Li C, Pan SM, Wang YW, Wang FL (2012) Central venous access sites for the prevention of venous thrombosis, stenosis and infection. Cochrane Database Syst Rev 3:CD004084Google Scholar
  200. 200.
    Deshpande KS, Hatem C, Ulrich HL et al (2005) The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. Crit Care Med 33(1):13–20PubMedCrossRefGoogle Scholar
  201. 201.
    Marik PE, Flemmer M, Harrison W (2012) The risk of catheter-related bloodstream infection with femoral venous catheters as compared to subclavian and internal jugular venous catheters: a systematic review of the literature and meta-analysis. Crit Care Med 40(8):2479–2485PubMedCrossRefGoogle Scholar
  202. 202.
    Lorente L, Henry C, Martin MM, Jimenez A, Mora ML (2005) Central venous catheter-related infection in a prospective and observational study of 2,595 catheters. Crit Care 9(6):R631–R635PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Lorente L, Jimenez A (2013) Central venous catheter site: should we really stop avoiding the femoral vein? Crit Care Med 41(4):e34PubMedCrossRefGoogle Scholar
  204. 204.
    Lorente L, Jimenez A, Santana M et al (2007) Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit Care Med 35(10):2424–2427PubMedCrossRefGoogle Scholar
  205. 205.
    Nagashima G, Kikuchi T, Tsuyuzaki H et al (2006) To reduce catheter-related bloodstream infections: is the subclavian route better than the jugular route for central venous catheterization? J Infect Chemother 12(6):363–365PubMedCrossRefGoogle Scholar
  206. 206.
    Merrer J, De Jonghe B, Golliot F et al (2001) Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA 286(6):700–707PubMedCrossRefGoogle Scholar
  207. 207.
    Timsit JF, Bouadma L, Mimoz O et al (2013) Jugular versus femoral short-term catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. Am J Respir Crit Care Med 188(10):1232–1239PubMedCrossRefGoogle Scholar
  208. 208.
    Casanegra AI, Brannan S, Dadu R et al (2011) Short-term femoral vein catheterization rarely causes thrombosis or bacteremia. J Hosp Med 6(1):33–36PubMedCrossRefGoogle Scholar
  209. 209.
    Gowardman JR, Robertson IK, Parkes S, Rickard CM (2008) Influence of insertion site on central venous catheter colonization and bloodstream infection rates. Intensive Care Med 34(6):1038–1045PubMedCrossRefGoogle Scholar
  210. 210.
    Parienti JJ, Thirion M, Megarbane B et al (2008) Femoral vs jugular venous catheterization and risk of nosocomial events in adults requiring acute renal replacement therapy: a randomized controlled trial. JAMA 299(20):2413–2422PubMedCrossRefGoogle Scholar
  211. 211.
    Parienti JJ, du Cheyron D, Timsit JF et al (2012) Meta-analysis of subclavian insertion and nontunneled central venous catheter-associated infection risk reduction in critically ill adults. Crit Care Med 40(5):1627–1634PubMedCrossRefGoogle Scholar
  212. 212.
    Ruesch S, Walder B, Tramer MR (2002) Complications of central venous catheters: internal jugular versus subclavian access – a systematic review. Crit Care Med 30(2):454–460PubMedCrossRefGoogle Scholar
  213. 213.
    de Jonge RC, Polderman KH, Gemke RJ (2005) Central venous catheter use in the pediatric patient: mechanical and infectious complications. Pediatr Crit Care Med 6(3):329–339PubMedCrossRefGoogle Scholar
  214. 214.
    Reyes JA, Habash ML, Taylor RP (2012) Femoral central venous catheters are not associated with higher rates of infection in the pediatric critical care population. Am J Infect Control 40(1):43–47PubMedCrossRefGoogle Scholar
  215. 215.
    Lorente L, Jimenez A, Martin MM et al (2009) Influence of tracheostomy on the incidence of central venous catheter-related bacteremia. Eur J Clin Microbiol Infect Dis 28(9):1141–1145PubMedCrossRefGoogle Scholar
  216. 216.
    Lorente L, Jimenez A, Martin MM, Palmero S, Jimenez JJ, Mora ML (2011) Lower incidence of catheter-related bloodstream infection in subclavian venous access in the presence of tracheostomy than in femoral venous access: prospective observational study. Clin Microbiol Infect 17(6):870–872PubMedCrossRefGoogle Scholar
  217. 217.
    Lorente L, Jimenez A, Roca I, Martin MM, Mora ML (2011) Influence of tracheostomy on the incidence of catheter-related bloodstream infection in the catheterization of jugular vein by posterior access. Eur J Clin Microbiol Infect Dis 30(9):1049–1051PubMedCrossRefGoogle Scholar
  218. 218.
    Chopra V, Anand S, Krein SL, Chenoweth C, Saint S (2012) Bloodstream infection, venous thrombosis, and peripherally inserted central catheters: reappraising the evidence. Am J Med 125(8):733–741PubMedCrossRefGoogle Scholar
  219. 219.
    Gunst M, Matsushima K, Vanek S, Gunst R, Shafi S, Frankel H (2011) Peripherally inserted central catheters may lower the incidence of catheter-related blood stream infections in patients in surgical intensive care units. Surg Infect (Larchmt) 12(4):279–282CrossRefGoogle Scholar
  220. 220.
    Fearonce G, Faraklas I, Saffle JR, Cochran A (2010) Peripherally inserted central venous catheters and central venous catheters in burn patients: a comparative review. J Burn Care Res 31(1):31–35PubMedCrossRefGoogle Scholar
  221. 221.
    Safdar N, Maki DG (2005) Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 128(2):489–495PubMedCrossRefGoogle Scholar
  222. 222.
    Pongruangporn M, Ajenjo MC, Russo AJ et al (2013) Patient- and device-specific risk factors for peripherally inserted central venous catheter-related bloodstream infections. Infect Control Hosp Epidemiol 34(2):184–189PubMedCrossRefGoogle Scholar
  223. 223.
    Ajenjo MC, Morley JC, Russo AJ et al (2011) Peripherally inserted central venous catheter-associated bloodstream infections in hospitalized adult patients. Infect Control Hosp Epidemiol 32(2):125–130PubMedCrossRefGoogle Scholar
  224. 224.
    Chopra V, Anand S, Hickner A et al (2013) Risk of venous thromboembolism associated with peripherally inserted central catheters: a systematic review and meta-analysis. Lancet 382(9889):311–325PubMedCrossRefGoogle Scholar
  225. 225.
    Patel GS, Jain K, Kumar R et al (2014) Comparison of peripherally inserted central venous catheters (PICC) versus subcutaneously implanted port-chamber catheters by complication and cost for patients receiving chemotherapy for non-haematological malignancies. Support Care Cancer 22(1):121–128PubMedCrossRefGoogle Scholar
  226. 226.
    Levy I, Bendet M, Samra Z, Shalit I, Katz J (2010) Infectious complications of peripherally inserted central venous catheters in children. Pediatr Infect Dis J 29(5):426–429PubMedCrossRefGoogle Scholar
  227. 227.
    Jumani K, Advani S, Reich NG, Gosey L, Milstone AM (2013) Risk factors for peripherally inserted central venous catheter complications in children. JAMA Pediatr 167(5):429–435PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Dobbins BM, Catton JA, Kite P, McMahon MJ, Wilcox MH (2003) Each lumen is a potential source of central venous catheter-related bloodstream infection. Crit Care Med 31(6):1688–1690PubMedCrossRefGoogle Scholar
  229. 229.
    Dezfulian C, Lavelle J, Nallamothu BK, Kaufman SR, Saint S (2003) Rates of infection for single-lumen versus multilumen central venous catheters: a meta-analysis. Crit Care Med 31(9):2385–2390PubMedCrossRefGoogle Scholar
  230. 230.
    Templeton A, Schlegel M, Fleisch F et al (2008) Multilumen central venous catheters increase risk for catheter-related bloodstream infection: prospective surveillance study. Infection 36(4):322–327PubMedCrossRefGoogle Scholar
  231. 231.
    Zurcher M, Tramer MR, Walder B (2004) Colonization and bloodstream infection with single- versus multi-lumen central venous catheters: a quantitative systematic review. Anesth Analg 99(1):177–182PubMedCrossRefGoogle Scholar
  232. 232.
    Scheithauer S, Hafner H, Schroder J et al (2013) Simultaneous placement of multiple central lines increases central line-associated bloodstream infection rates. Am J Infect Control 41(2):113–117PubMedCrossRefGoogle Scholar
  233. 233.
    Aslakson RA, Romig M, Galvagno SM et al (2011) Effect of accounting for multiple concurrent catheters on central line-associated bloodstream infection rates: practical data supporting a theoretical concern. Infect Control Hosp Epidemiol 32(2):121–124PubMedCrossRefGoogle Scholar
  234. 234.
    Odetola FO, Moler FW, Dechert RE, VanDerElzen K, Chenoweth C (2003) Nosocomial catheter-related bloodstream infections in a pediatric intensive care unit: risk and rates associated with various intravascular technologies. Pediatr Crit Care Med 4(4):432–436PubMedCrossRefGoogle Scholar
  235. 235.
    Mermel LA, McCormick RD, Springman SR, Maki DG (1991) The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 91(3B):197S–205SPubMedCrossRefGoogle Scholar
  236. 236.
    Ho KM, Litton E (2006) Use of chlorhexidine-impregnated dressing to prevent vascular and epidural catheter colonization and infection: a meta-analysis. J Antimicrob Chemother 58(2):281–287PubMedCrossRefGoogle Scholar
  237. 237.
    Gillies D, O'Riordan L, Carr D, Frost J, Gunning R, O'Brien I (2003) Gauze and tape and transparent polyurethane dressings for central venous catheters. Cochrane Database Syst Rev 4:CD003827Google Scholar
  238. 238.
    Gillies D, O'Riordan E, Carr D, O'Brien I, Frost J, Gunning R (2003) Central venous catheter dressings: a systematic review. J Adv Nurs 44(6):623–632PubMedCrossRefGoogle Scholar
  239. 239.
    Bambi S, Lucchini A, Giusti M (2014) Insertion site care of central venous catheters: are guidelines clear enough? J Hosp Infect 86(4):276–277PubMedCrossRefGoogle Scholar
  240. 240.
    Rupp ME, Cassling K, Faber H et al (2013) Hospital-wide assessment of compliance with central venous catheter dressing recommendations. Am J Infect Control 41(1):89–91PubMedCrossRefGoogle Scholar
  241. 241.
    Webster J, Gillies D, O'Riordan E, Sherriff KL, Rickard CM (2011) Gauze and tape and transparent polyurethane dressings for central venous catheters. Cochrane Database Syst Rev 11:CD003827Google Scholar
  242. 242.
    Roberts B, Cheung D (1998) Biopatch – a new concept in antimicrobial dressings for invasive devices. Aust Crit Care 11(1):16–19PubMedCrossRefGoogle Scholar
  243. 243.
    Pfaff B, Heithaus T, Emanuelsen M (2012) Use of a 1-piece chlorhexidine gluconate transparent dressing on critically ill patients. Crit Care Nurse 32(4):35–40PubMedCrossRefGoogle Scholar
  244. 244.
    Shapey IM, Foster MA, Whitehouse T, Jumaa P, Bion JF (2009) Central venous catheter-related bloodstream infections: improving post-insertion catheter care. J Hosp Infect 71(2):117–122PubMedCrossRefGoogle Scholar
  245. 245.
    Guerin K, Wagner J, Rains K, Bessesen M (2010) Reduction in central line-associated bloodstream infections by implementation of a postinsertion care bundle. Am J Infect Control 38(6):430–433PubMedCrossRefGoogle Scholar
  246. 246.
    Hatler C, Buckwald L, Salas-Allison Z, Murphy-Taylor C (2009) Evaluating central venous catheter care in a pediatric intensive care unit. Am J Crit Care 18(6):514–520PubMedCrossRefGoogle Scholar
  247. 247.
    Miller SE, Maragakis LL (2012) Central line-associated bloodstream infection prevention. Curr Opin Infect Dis 25(4):412–422PubMedCrossRefGoogle Scholar
  248. 248.
    Miller MR, Niedner MF, Huskins WC et al (2011) Reducing PICU central line-associated bloodstream infections: 3-year results. Pediatrics 128(5):e1077–e1083PubMedCrossRefGoogle Scholar
  249. 249.
    Schwebel C, Lucet JC, Vesin A et al (2012) Economic evaluation of chlorhexidine-impregnated sponges for preventing catheter-related infections in critically ill adults in the Dressing Study. Crit Care Med 40(1):11–17PubMedCrossRefGoogle Scholar
  250. 250.
    National Institute for Health and Clinical Excellence (NICE) (Hrsg) (2015) The 3 M Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites. Medical Technology GuidanceGoogle Scholar
  251. 251.
    Maunoury F, Motrunich A, Palka-Santini M, Bernatchez SF, Ruckly S, Timsit JF (2015) Cost-effectiveness analysis of a transparent antimicrobial dressing for managing central venous and arterial catheters in intensive care units. PLOS ONE 10(6):e0130439PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Levy I, Katz J, Solter E et al (2005) Chlorhexidine-impregnated dressing for prevention of colonization of central venous catheters in infants and children: a randomized controlled study. Pediatr Infect Dis J 24(8):676–679PubMedCrossRefGoogle Scholar
  253. 253.
    Camins BC, Richmond AM, Dyer KL et al (2010) A crossover intervention trial evaluating the efficacy of a chlorhexidine-impregnated sponge in reducing catheter-related bloodstream infections among patients undergoing hemodialysis. Infect Control Hosp Epidemiol 31(11):1118–1123PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Safdar N, O'Horo JC, Ghufran A et al (2014) Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis. Crit Care Med 42(7):1703–1713PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Pronovost PJ, Berenholtz SM, Needham DM (2008) Translating evidence into practice: a model for large scale knowledge translation. BMJ 337:a1714PubMedCrossRefGoogle Scholar
  256. 256.
    Saint S, Kowalski CP, Banaszak-Holl J, Forman J, Damschroder L, Krein SL (2010) The importance of leadership in preventing healthcare-associated infection: results of a multisite qualitative study. Infect Control Hosp Epidemiol 31(9):901–907PubMedCrossRefGoogle Scholar
  257. 257.
    Krein SL, Damschroder LJ, Kowalski CP, Forman J, Hofer TP, Saint S (2010) The influence of organizational context on quality improvement and patient safety efforts in infection prevention: a multi-center qualitative study. Soc Sci Med 71(9):1692–1701PubMedCrossRefGoogle Scholar
  258. 258.
    Huang EY, Chen C, Abdullah F et al (2011) Strategies for the prevention of central venous catheter infections: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 46(10):2000–2011PubMedCrossRefGoogle Scholar
  259. 259.
    Laura R, Degl'Innocenti M, Mocali M et al (2000) Comparison of two different time interval protocols for central venous catheter dressing in bone marrow transplant patients: results of a randomized, multicenter study. The Italian Nurse Bone Marrow Transplant Group (GITMO). Haematologica 85(3):275–279PubMedGoogle Scholar
  260. 260.
    Vokurka S, Bystricka E, Visokaiova M, Scudlova J (2009) Once- versus twice-weekly changing of central venous catheter occlusive dressing in intensive chemotherapy patients: results of a randomized multicenter study. Med Sci Monit 15(3):CR107–CR110PubMedGoogle Scholar
  261. 261.
    Maki DG, Ringer M, Alvarado CJ (1991) Prospective randomised trial of povidone-iodine, alcohol, and chlorhexidine for prevention of infection associated with central venous and arterial catheters. Lancet 338(8763):339–343PubMedCrossRefGoogle Scholar
  262. 262.
    Maki D (2014) Autor's Reply to Maiwald et al. Lancet 384(October 11):1345–1346PubMedCrossRefGoogle Scholar
  263. 263.
    Maiwald M, Assam PN, Chan ES, Dancer SJ (2014) Chlorhexidine's role in skin antisepsis: questioning the evidence. Lancet 384(9951):1344–1345PubMedCrossRefGoogle Scholar
  264. 264.
    Maiwald M, Chan ES (2012) The forgotten role of alcohol: a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLOS ONE 7(9):e44277PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Maiwald M, Chan ES (2014) Pitfalls in evidence assessment: the case of chlorhexidine and alcohol in skin antisepsis. J Antimicrob Chemother 69(8):2017–2021PubMedCrossRefGoogle Scholar
  266. 266.
    Reichel M, Heisig P, Kohlmann T, Kampf G (2009) Alcohols for skin antisepsis at clinically relevant skin sites. Antimicrob Agents Chemother 53(11):4778–4782PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Ulmer M, Lademann J, Patzelt A et al (2014) New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol 27(6):283–292PubMedCrossRefGoogle Scholar
  268. 268.
    Mimoz O, Pieroni L, Lawrence C et al (1996) Prospective, randomized trial of two antiseptic solutions for prevention of central venous or arterial catheter colonization and infection in intensive care unit patients. Crit Care Med 24(11):1818–1823PubMedCrossRefGoogle Scholar
  269. 269.
    Mimoz O, Lucet JC, Kerforne T et al (2015) Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): an open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 386(10008):2069–2077PubMedCrossRefGoogle Scholar
  270. 270.
    Koburger T, Hubner NO, Braun M, Siebert J, Kramer A (2010) Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J Antimicrob Chemother 65(8):1712–1719PubMedCrossRefGoogle Scholar
  271. 271.
    Muller G, Langer J, Siebert J, Kramer A (2014) Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 27(1):1–8PubMedCrossRefGoogle Scholar
  272. 272.
    Hubner NO, Siebert J, Kramer A (2010) Octenidine dihydrochloride, a modern antiseptic for skin, mucous membranes and wounds. Skin Pharmacol Physiol 23(5):244–258PubMedCrossRefGoogle Scholar
  273. 273.
    Pham NH, Weiner JM, Reisner GS, Baldo BA (2000) Anaphylaxis to chlorhexidine. Case report. Implication of immunoglobulin E antibodies and identification of an allergenic determinant. Clin Exp Allergy 30(7):1001–1007PubMedCrossRefGoogle Scholar
  274. 274.
    Stingeni L, Lapomarda V, Lisi P (1995) Occupational hand dermatitis in hospital environments. Contact Derm 33(3):172–176PubMedCrossRefGoogle Scholar
  275. 275.
    Faber M, Leysen J, Bridts C, Sabato V, De Clerck LS, Ebo DG (2012) Allergy to chlorhexidine: beware of the central venous catheter. Acta Anaesthesiol Belg 63(4):191–194PubMedGoogle Scholar
  276. 276.
    Guleri A, Kumar A, Morgan RJ, Hartley M, Roberts DH (2012) Anaphylaxis to chlorhexidine-coated central venous catheters: a case series and review of the literature. Surg Infect (Larchmt) 13(3):171–174CrossRefGoogle Scholar
  277. 277.
    Khoo A, Oziemski P (2011) Chlorhexidine impregnated central venous catheter inducing an anaphylatic shock in the intensive care unit. Heart Lung Circ 20(10):669–670PubMedCrossRefGoogle Scholar
  278. 278.
    Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) (2013) Chlorhexidin: Anaphylaktische Reaktionen. . Zugegriffen: 6 Dez 2016Google Scholar
  279. 279.
    Horner C, Mawer D, Wilcox M (2012) Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67(11):2547–2559PubMedCrossRefGoogle Scholar
  280. 280.
    Tattawasart U, Maillard JY, Furr JR, Russell AD (1999) Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 42(3):219–229PubMedCrossRefGoogle Scholar
  281. 281.
    Fritz SA, Hogan PG, Camins BC et al (2013) Mupirocin and chlorhexidine resistance in Staphylococcus aureus in patients with community-onset skin and soft tissue infections. Antimicrob Agents Chemother 57(1):559–568PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    McNeil J, Ligon J, Hulten K et al (2013) Staphylococcus aureus infections in children with congenital heart disease. J Pediatric Infect Dis Soc 2(4):337–344PubMedCrossRefGoogle Scholar
  283. 283.
    McNeil JC, Hulten KG, Kaplan SL, Mahoney DH, Mason EO (2013) Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis J 32(2):124–128PubMedCrossRefGoogle Scholar
  284. 284.
    Ho CM, Li CY, Ho MW, Lin CY, Liu SH, Lu JJ (2012) High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 56(11):5693–5697PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Lee AS, Macedo-Vinas M, Francois P et al (2011) Impact of combined low-level mupirocin and genotypic chlorhexidine resistance on persistent methicillin-resistant Staphylococcus aureus carriage after decolonization therapy: a case-control study. Clin Infect Dis 52(12):1422–1430PubMedCrossRefGoogle Scholar
  286. 286.
    McGann P, Kwak YI, Summers A, Cummings JF, Waterman PE, Lesho EP (2011) Detection of qacA/B in clinical isolates of methicillin-resistant Staphylococcus aureus from a regional healthcare network in the eastern United States. Infect Control Hosp Epidemiol 32(11):1116–1119PubMedCrossRefGoogle Scholar
  287. 287.
    Otter JA, Patel A, Cliff PR, Halligan EP, Tosas O, Edgeworth JD (2013) Selection for qacA carriage in CC22, but not CC30, methicillin-resistant Staphylococcus aureus bloodstream infection isolates during a successful institutional infection control programme. J Antimicrob Chemother 68(5):992–999PubMedCrossRefGoogle Scholar
  288. 288.
    Gradel KO, Randall L, Sayers AR, Davies RH (2005) Possible associations between Salmonella persistence in poultry houses and resistance to commonly used disinfectants and a putative role of mar. Vet Microbiol 107(1–2):127–138PubMedCrossRefGoogle Scholar
  289. 289.
    Langsrud S, Sundheim G, Borgmann-Strahsen R (2003) Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J Appl Microbiol 95(4):874–882PubMedCrossRefGoogle Scholar
  290. 290.
    Al-Doori Z, Goroncy-Bermes P, Gemmell CG, Morrison D (2007) Low-level exposure of MRSA to octenidine dihydrochloride does not select for resistance. J Antimicrob Chemother 59(6):1280–1281PubMedCrossRefGoogle Scholar
  291. 291.
    Patel JB, Gorwitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49(6):935–941PubMedCrossRefGoogle Scholar
  292. 292.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2014) Empfehlungen zur Prävention und Kontrolle von Methicillin-resistenten Staphylococcus aureus-Stämmen (MRSA) in medizinischen und pflegerischen Einrichtungen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut. Bundesgesundheitsblatt 57(6):696–732Google Scholar
  293. 293.
    Ammerlaan HS, Kluytmans JA, Wertheim HF, Nouwen JL, Bonten MJ (2009) Eradication of methicillin-resistant Staphylococcus aureus carriage: a systematic review. Clin Infect Dis 48(7):922–930PubMedCrossRefGoogle Scholar
  294. 294.
    Milstone AM, Passaretti CL, Perl TM (2008) Chlorhexidine: expanding the armamentarium for infection control and prevention. Clin Infect Dis 46(2):274–281PubMedCrossRefGoogle Scholar
  295. 295.
    Popovich KJ, Lyles R, Hayes R et al (2012) Relationship between chlorhexidine gluconate skin concentration and microbial density on the skin of critically ill patients bathed daily with chlorhexidine gluconate. Infect Control Hosp Epidemiol 33(9):889–896PubMedPubMedCentralCrossRefGoogle Scholar
  296. 296.
    Climo MW, Sepkowitz KA, Zuccotti G et al (2009) The effect of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med 37(6):1858–1865PubMedCrossRefGoogle Scholar
  297. 297.
    Climo MW, Yokoe DS, Warren DK et al (2013) Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med 368(6):533–542PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Huang SS, Septimus E, Kleinman K et al (2013) Targeted versus universal decolonization to prevent ICU infection. N Engl J Med 368(24):2255–2265PubMedCrossRefGoogle Scholar
  299. 299.
    Montecalvo MA, McKenna D, Yarrish R et al (2012) Chlorhexidine bathing to reduce central venous catheter-associated bloodstream infection: impact and sustainability. Am J Med 125(5):505–511PubMedCrossRefGoogle Scholar
  300. 300.
    Bleasdale SC, Trick WE, Gonzalez IM, Lyles RD, Hayden MK, Weinstein RA (2007) Effectiveness of chlorhexidine bathing to reduce catheter-associated bloodstream infections in medical intensive care unit patients. Arch Intern Med 167(19):2073–2079PubMedCrossRefGoogle Scholar
  301. 301.
    O'Horo JC, Silva GL, Munoz-Price LS, Safdar N (2012) The efficacy of daily bathing with chlorhexidine for reducing healthcare-associated bloodstream infections: a meta-analysis. Infect Control Hosp Epidemiol 33(3):257–267PubMedCrossRefGoogle Scholar
  302. 302.
    Popovich KJ, Hota B, Hayes R, Weinstein RA, Hayden MK (2009) Effectiveness of routine patient cleansing with chlorhexidine gluconate for infection prevention in the medical intensive care unit. Infect Control Hosp Epidemiol 30(10):959–963PubMedCrossRefGoogle Scholar
  303. 303.
    Munoz-Price LS, Hota B, Stemer A, Weinstein RA (2009) Prevention of bloodstream infections by use of daily chlorhexidine baths for patients at a long-term acute care hospital. Infect Control Hosp Epidemiol 30(11):1031–1035PubMedCrossRefGoogle Scholar
  304. 304.
    Karki S, Cheng AC (2012) Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect 82(2):71–84PubMedCrossRefGoogle Scholar
  305. 305.
    Milstone AM, Elward A, Song X et al (2013) Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet 381(9872):1099–1106PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
    Popovich KJ, Hota B, Hayes R, Weinstein RA, Hayden MK (2010) Daily skin cleansing with chlorhexidine did not reduce the rate of central-line associated bloodstream infection in a surgical intensive care unit. Intensive Care Med 36(5):854–858PubMedCrossRefGoogle Scholar
  307. 307.
    Dissemond J, Gerber V, Kramer A et al (2009) Praxisorientierte Expertenempfehlung zur Behandlung kritisch kolonisierter und lokal infizierter Wunden mit Polihexanid. Wundmanagement 14(1):62–68Google Scholar
  308. 308.
    Seguin P, Laviolle B, Isslame S, Coue A, Malledant Y (2010) Effectiveness of simple daily sensitization of physicians to the duration of central venous and urinary tract catheterization. Intensive Care Med 36(7):1202–1206PubMedCrossRefGoogle Scholar
  309. 309.
    Tejedor SC, Tong D, Stein J et al (2012) Temporary central venous catheter utilization patterns in a large tertiary care center: tracking the „idle central venous catheter“. Infect Control Hosp Epidemiol 33(1):50–57PubMedCrossRefGoogle Scholar
  310. 310.
    Rotz S, Sopirala MM (2012) Assessment beyond central line bundle: audits for line necessity in infected central lines in a surgical intensive care unit. Am J Infect Control 40(1):88–89PubMedCrossRefGoogle Scholar
  311. 311.
    Cload B, Day AG, Ilan R (2010) Evaluation of unnecessary central venous catheters in critically ill patients: a prospective observational study. Can J Anaesth 57(9):830–835PubMedCrossRefGoogle Scholar
  312. 312.
    O'Grady NP, Barie PS, Bartlett JG et al (2008) Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med 36(4):1330–1349PubMedCrossRefGoogle Scholar
  313. 313.
    Chen XX, Lo YC, Su LH, Chang CL (2015) Investigation of the case numbers of catheter-related bloodstream infection overestimated by the central line-associated bloodstream infection surveillance definition. J Microbiol Immunol Infect 48(6):625–631PubMedCrossRefGoogle Scholar
  314. 314.
    Rijnders BJ, Peetermans WE, Verwaest C, Wilmer A, Van Wijngaerden E (2004) Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med 30(6):1073–1080PubMedCrossRefGoogle Scholar
  315. 315.
    Cook D, Randolph A, Kernerman P et al (1997) Central venous catheter replacement strategies: a systematic review of the literature. Crit Care Med 25(8):1417–1424PubMedCrossRefGoogle Scholar
  316. 316.
    Rupp SM, Apfelbaum JL, Blitt C et al (2012) Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology 116(3):539–573PubMedCrossRefGoogle Scholar
  317. 317.
    Garcia-Teresa MA, Casado-Flores J, Delgado Dominguez MA et al (2007) Infectious complications of percutaneous central venous catheterization in pediatric patients: a Spanish multicenter study. Intensive Care Med 33(3):466–476PubMedCrossRefGoogle Scholar
  318. 318.
    Safdar N, Kluger DM, Maki DG (2002) A review of risk factors for catheter-related bloodstream infection caused by percutaneously inserted, noncuffed central venous catheters: implications for preventive strategies. Medicine (Baltimore) 81(6):466–479CrossRefGoogle Scholar
  319. 319.
    Castelli GP, Pognani C, Stuani A, Cita M, Paladini R (2007) Central venous catheter replacement in the ICU: new site versus guidewire exchange. Minerva Anestesiol 73(5):267–273PubMedGoogle Scholar
  320. 320.
    Rey C, Alvarez F, De-La-Rua V et al (2011) Intervention to reduce catheter-related bloodstream infections in a pediatric intensive care unit. Intensive Care Med 37(4):678–685PubMedCrossRefGoogle Scholar
  321. 321.
    Chaftari AM, Kassis C, El Issa H et al (2011) Novel approach using antimicrobial catheters to improve the management of central line-associated bloodstream infections in cancer patients. Cancer 117(11):2551–2558PubMedCrossRefGoogle Scholar
  322. 322.
    Lai NM, Chaiyakunapruk N, Lai NA, O'Riordan E, Pau WS, Saint S (2013) Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev 6:CD007878Google Scholar
  323. 323.
    Darouiche RO, Raad II, Heard SO et al (1999) A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N Engl J Med 340(1):1–8PubMedCrossRefGoogle Scholar
  324. 324.
    Rupp ME, Lisco SJ, Lipsett PA et al (2005) Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter-related infections: a randomized, controlled trial. Ann Intern Med 143(8):570–580PubMedCrossRefGoogle Scholar
  325. 325.
    Wang H, Huang T, Jing J et al (2010) Effectiveness of different central venous catheters for catheter-related infections: a network meta-analysis. J Hosp Infect 76(1):1–11PubMedCrossRefGoogle Scholar
  326. 326.
    Falagas ME, Fragoulis K, Bliziotis IA, Chatzinikolaou I (2007) Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J Antimicrob Chemother 59(3):359–369PubMedCrossRefGoogle Scholar
  327. 327.
    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309–332PubMedCrossRefGoogle Scholar
  328. 328.
    Ramos ER, Reitzel R, Jiang Y et al (2011) Clinical effectiveness and risk of emerging resistance associated with prolonged use of antibiotic-impregnated catheters: more than 0.5 million catheter days and 7 years of clinical experience. Crit Care Med 39(2):245–251PubMedCrossRefGoogle Scholar
  329. 329.
    Raad I, Darouiche R, Dupuis J et al (1997) Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group. Ann Intern Med 127(4):267–274PubMedCrossRefGoogle Scholar
  330. 330.
    Raad I, Mohamed JA, Reitzel RA et al (2012) Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob Agents Chemother 56(2):935–941PubMedPubMedCentralCrossRefGoogle Scholar
  331. 331.
    Lorente L, Lecuona M, Jimenez A et al (2014) Chlorhexidine-silver sulfadiazine-impregnated venous catheters save costs. Am J Infect Control 42(3):321–324PubMedCrossRefGoogle Scholar
  332. 332.
    Lorente L, Lecuona M, Ramos MJ, Jimenez A, Mora ML, Sierra A (2012) Rifampicin-miconazole-impregnated catheters save cost in jugular venous sites with tracheostomy. Eur J Clin Microbiol Infect Dis 31(8):1833–1836PubMedCrossRefGoogle Scholar
  333. 333.
    Armstrong SD, Thomas W, Neaman KC, Ford RD, Paulson J (2013) The impact of antibiotic impregnated PICC lines on the incidence of bacteremia in a regional burn center. Burns 39(4):632–635PubMedCrossRefGoogle Scholar
  334. 334.
    Chelliah A, Heydon KH, Zaoutis TE et al (2007) Observational trial of antibiotic-coated central venous catheters in critically ill pediatric patients. Pediatr Infect Dis J 26(9):816–820PubMedCrossRefGoogle Scholar
  335. 335.
    Cherry-Bukowiec JR, Denchev K, Dickinson S et al (2011) Prevention of catheter-related blood stream infection: back to basics? Surg Infect (Larchmt) 12(1):27–32CrossRefGoogle Scholar
  336. 336.
    Oto J, Imanaka H, Konno M, Nakataki E, Nishimura M (2011) A prospective clinical trial on prevention of catheter contamination using the hub protection cap for needleless injection device. Am J Infect Control 39(4):309–313PubMedCrossRefGoogle Scholar
  337. 337.
    Casey AL, Worthington T, Lambert PA, Quinn D, Faroqui MH, Elliott TS (2003) A randomized, prospective clinical trial to assess the potential infection risk associated with the PosiFlow needleless connector. J Hosp Infect 54(4):288–293PubMedCrossRefGoogle Scholar
  338. 338.
    Yebenes JC, Serra-Prat M (2008) Clinical use of disinfectable needle-free connectors. Am J Infect Control 36(10):S17.e1–S17.e4CrossRefGoogle Scholar
  339. 339.
    Kellerman S, Shay DK, Howard J et al (1996) Bloodstream infections in home infusion patients: the influence of race and needleless intravascular access devices. J Pediatr 129(5):711–717PubMedCrossRefGoogle Scholar
  340. 340.
    Rupp ME, Sholtz LA, Jourdan DR et al (2007) Outbreak of bloodstream infection temporally associated with the use of an intravascular needleless valve. Clin Infect Dis 44(11):1408–1414PubMedCrossRefGoogle Scholar
  341. 341.
    Wheeler DS, Giaccone M, Hutchinson N et al (2012) An unexpected increase in catheter-associated bloodstream infections at a children's hospital following introduction of the Spiros closed male connector. Am J Infect Control 40(1):48–50PubMedCrossRefGoogle Scholar
  342. 342.
    Cookson ST, Ihrig M, O'Mara EM et al (1998) Increased bloodstream infection rates in surgical patients associated with variation from recommended use and care following implementation of a needleless device. Infect Control Hosp Epidemiol 19(1):23–27PubMedCrossRefGoogle Scholar
  343. 343.
    Maragakis LL, Bradley KL, Song X et al (2006) Increased catheter-related bloodstream infection rates after the introduction of a new mechanical valve intravenous access port. Infect Control Hosp Epidemiol 27(1):67–70PubMedCrossRefGoogle Scholar
  344. 344.
    McKee C, Berkowitz I, Cosgrove SE et al (2008) Reduction of catheter-associated bloodstream infections in pediatric patients: experimentation and reality. Pediatr Crit Care Med 9(1):40–46PubMedCrossRefGoogle Scholar
  345. 345.
    Bouza E, Munoz P, Lopez-Rodriguez J et al (2003) A needleless closed system device (CLAVE) protects from intravascular catheter tip and hub colonization: a prospective randomized study. J Hosp Infect 54(4):279–287PubMedCrossRefGoogle Scholar
  346. 346.
    Esteve F, Pujol M, Limon E et al (2007) Bloodstream infection related to catheter connections: a prospective trial of two connection systems. J Hosp Infect 67(1):30–34PubMedCrossRefGoogle Scholar
  347. 347.
    Ishizuka M, Nagata H, Takagi K, Kubota K (2013) Needleless closed system does not reduce central venous catheter-related bloodstream infection: a retrospective study. Int Surg 98(1):88–93PubMedPubMedCentralCrossRefGoogle Scholar
  348. 348.
    Btaiche IF, Kovacevich DS, Khalidi N, Papke LF (2011) The effects of needleless connectors on catheter-related bloodstream infections. Am J Infect Control 39(4):277–283PubMedCrossRefGoogle Scholar
  349. 349.
    Niel-Weise BS, Daha TJ, van den Broek PJ (2006) Is there evidence for recommending needleless closed catheter access systems in guidelines? A systematic review of randomized controlled trials. J Hosp Infect 62(4):406–413PubMedCrossRefGoogle Scholar
  350. 350.
    Yebenes JC, Vidaur L, Serra-Prat M et al (2004) Prevention of catheter-related bloodstream infection in critically ill patients using a disinfectable, needle-free connector: a randomized controlled trial. Am J Infect Control 32(5):291–295PubMedCrossRefGoogle Scholar
  351. 351.
    Field K, McFarlane C, Cheng AC et al (2007) Incidence of catheter-related bloodstream infection among patients with a needleless, mechanical valve-based intravenous connector in an Australian hematology-oncology unit. Infect Control Hosp Epidemiol 28(5):610–613PubMedCrossRefGoogle Scholar
  352. 352.
    Salgado CD, Chinnes L, Paczesny TH, Cantey JR (2007) Increased rate of catheter-related bloodstream infection associated with use of a needleless mechanical valve device at a long-term acute care hospital. Infect Control Hosp Epidemiol 28(6):684–688PubMedCrossRefGoogle Scholar
  353. 353.
    Jarvis WR, Murphy C, Hall KK et al (2009) Health care-associated bloodstream infections associated with negative- or positive-pressure or displacement mechanical valve needleless connectors. Clin Infect Dis 49(12):1821–1827PubMedCrossRefGoogle Scholar
  354. 354.
    Danzig LE, Short LJ, Collins K et al (1995) Bloodstream infections associated with a needleless intravenous infusion system in patients receiving home infusion therapy. JAMA 273(23):1862–1864PubMedCrossRefGoogle Scholar
  355. 355.
    Do AN, Ray BJ, Banerjee SN et al (1999) Bloodstream infection associated with needleless device use and the importance of infection-control practices in the home health care setting. J Infect Dis 179(2):442–448PubMedCrossRefGoogle Scholar
  356. 356.
    Edgar KJ (2009) Does the evidence support the SHEA-IDSA recommendation on the use of positive-pressure mechanical valves? Infect Control Hosp Epidemiol 30(4):402–403PubMedCrossRefGoogle Scholar
  357. 357.
    Curran E (2016) Outbreak column 19: needleless connectors (NCs) tales from nine outbreaks. J Infect Prev 17(5):241–247PubMedPubMedCentralCrossRefGoogle Scholar
  358. 358.
    Food and Drug Administration (FDA) (2010) Positive displacement Needleless connectors and bloodstream infections. Zugegriffen: 6 Dez 2016Google Scholar
  359. 359.
    Casey A, Karpanen T, Nightingale P, Elliott T (2015) An in vitro comparison of microbial ingress into 8 different needleless IV access devices. J Infus Nurs 38(1):18–25PubMedCrossRefGoogle Scholar
  360. 360.
    Harnage S (2012) Seven years of zero central-line-associated bloodstream infections. Br J Nurs 21(21):S6PubMedCrossRefGoogle Scholar
  361. 361.
    Adams D, Karpanen T, Worthington T, Lambert P, Elliott TS (2006) Infection risk associated with a closed luer access device. J Hosp Infect 62(3):353–357PubMedCrossRefGoogle Scholar
  362. 362.
    Hong H, Morrow DF, Sandora TJ, Priebe GP (2013) Disinfection of needleless connectors with chlorhexidine-alcohol provides long-lasting residual disinfectant activity. Am J Infect Control 41(8):e77–e79PubMedCrossRefGoogle Scholar
  363. 363.
    Trautmann M, Kreutzberger M, Bobic R, Regnath T (2012) Disinfection of a needleless connector with alcohol-based disinfectant wipes – an experimental study. Hyg Med 37(9):354–359Google Scholar
  364. 364.
    Trautmann M, Moosbauer S, Schmitz FJ, Lepper PM (2004) Experimental study on the safety of a new connecting device. Am J Infect Control 32(5):296–300PubMedCrossRefGoogle Scholar
  365. 365.
    Simmons S, Bryson C, Porter S (2011) „Scrub the hub“: cleaning duration and reduction in bacterial load on central venous catheters. Crit Care Nurs Q 34(1):31–35PubMedCrossRefGoogle Scholar
  366. 366.
    Casey AL, Karpanen TJ, Nightingale P, Cook M, Elliott TS (2012) Microbiological comparison of a silver-coated and a non-coated needleless intravascular connector in clinical use. J Hosp Infect 80(4):299–303PubMedCrossRefGoogle Scholar
  367. 367.
    Linares J, Sitges-Serra A, Garau J, Perez JL, Martin R (1985) Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 21(3):357–360PubMedPubMedCentralGoogle Scholar
  368. 368.
    Lockman JL, Heitmiller ES, Ascenzi JA, Berkowitz I (2011) Scrub the hub! Catheter needleless port decontamination. Anesthesiology 114(4):958PubMedCrossRefGoogle Scholar
  369. 369.
    Sitges-Serra A, Hernandez R, Maestro S, Pi-Suner T, Garces JM, Segura M (1997) Prevention of catheter sepsis: the hub. Nutrition 13(4 Suppl):30S–35SPubMedCrossRefGoogle Scholar
  370. 370.
    Sitges-Serra A, Puig P, Linares J et al (1984) Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J Parenter Enteral Nutr 8(6):668–672PubMedCrossRefGoogle Scholar
  371. 371.
    Oto J, Nishimura M, Morimatsu H et al (2007) Comparison of contamination between conventional three-way stopcock and needleless injection device: a randomized controlled trial. Med Sci Monit 13(10):CR417–CR421PubMedGoogle Scholar
  372. 372.
    Moureau NL, Flynn J (2015) Disinfection of needleless connector hubs: clinical evidence systematic review. Nurs Res Pract 2015:796762PubMedPubMedCentralGoogle Scholar
  373. 373.
    Macias AE, Munoz JM, Herrera LE et al (2004) Nosocomial pediatric bacteremia: the role of intravenous set contamination in developing countries. Infect Control Hosp Epidemiol 25(3):226–230PubMedCrossRefGoogle Scholar
  374. 374.
    Mahieu LM, De Dooy JJ, De Muynck AO, Van Melckebeke G, Ieven MM, Van Reempts PJ (2001) Microbiology and risk factors for catheter exit-site and -hub colonization in neonatal intensive care unit patients. Infect Control Hosp Epidemiol 22(6):357–362PubMedCrossRefGoogle Scholar
  375. 375.
    Mahieu LM, De Dooy JJ, Lenaerts AE, Ieven MM, De Muynck AO (2001) Catheter manipulations and the risk of catheter-associated bloodstream infection in neonatal intensive care unit patients. J Hosp Infect 48(1):20–26PubMedCrossRefGoogle Scholar
  376. 376.
    Rupp ME, Yu S, Huerta T et al (2012) Adequate disinfection of a split-septum needleless intravascular connector with a 5-second alcohol scrub. Infect Control Hosp Epidemiol 33(7):661–665PubMedCrossRefGoogle Scholar
  377. 377.
    Kaler W, Chinn R (2007) Successful disinfection of needleless access ports: a matter of time and friction. J Assoc Vasc Access 12(3):140–142CrossRefGoogle Scholar
  378. 378.
    Casey AL, Lambert PA, Elliott TS (2006) Is there evidence for recommending needleless closed catheter access systems in guidelines? J Hosp Infect 64(4):405–406PubMedCrossRefGoogle Scholar
  379. 379.
    Kuriakose S, Grüter B, Exner M, Gemein S, Gebel J (2015) Evaluierung der mikrobiellen Dichtigkeit von Closed System Transfer Devices am Beispiel eines nadelfreien Ventilkonnektors. Hyg Med 40(7/8):236–240Google Scholar
  380. 380.
    Menyhay SZ, Maki DG (2006) Disinfection of needleless catheter connectors and access ports with alcohol may not prevent microbial entry: the promise of a novel antiseptic-barrier cap. Infect Control Hosp Epidemiol 27(1):23–27PubMedCrossRefGoogle Scholar
  381. 381.
    Menyhay SZ, Maki DG (2008) Preventing central venous catheter-associated bloodstream infections: development of an antiseptic barrier cap for needleless connectors. Am J Infect Control 36(10):S174.e1–S174.e5CrossRefGoogle Scholar
  382. 382.
    Engelhart S, Exner M, Simon A (2015) In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures. GMS Hyg Infect Control 10:Doc17PubMedPubMedCentralGoogle Scholar
  383. 383.
    Simon A, Trautmann M (2008) [Needleless connection valves-commentary from a clinical perspective]. Dtsch Med Wochenschr 133(5):206–208PubMedCrossRefGoogle Scholar
  384. 384.
    Salzman MB, Isenberg HD, Rubin LG (1993) Use of disinfectants to reduce microbial contamination of hubs of vascular catheters. J Clin Microbiol 31(3):475–479PubMedPubMedCentralGoogle Scholar
  385. 385.
    Salzman MB, Isenberg HD, Shapiro JF, Lipsitz PJ, Rubin LG (1993) A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J Infect Dis 167(2):487–490PubMedCrossRefGoogle Scholar
  386. 386.
    Salzman MB, Rubin LG (1997) Relevance of the catheter hub as a portal for microorganisms causing catheter-related bloodstream infections. Nutrition 13(4 Suppl):15S–17SPubMedCrossRefGoogle Scholar
  387. 387.
    Holroyd JL, Paulus DA, Rand KH, Enneking FK, Morey TE, Rice MJ (2014) Universal intravenous access cleaning device fails to sterilize stopcocks. Anesth Analg 118(2):333–343PubMedCrossRefGoogle Scholar
  388. 388.
    Sannoh S, Clones B, Munoz J, Montecalvo M, Parvez B (2010) A multimodal approach to central venous catheter hub care can decrease catheter-related bloodstream infection. Am J Infect Control 38(6):424–429PubMedCrossRefGoogle Scholar
  389. 389.
    Soothill JS, Bravery K, Ho A, Macqueen S, Collins J, Lock P (2009) A fall in bloodstream infections followed a change to 2 % chlorhexidine in 70 % isopropanol for catheter connection antisepsis: a pediatric single center before/after study on a hemopoietic stem cell transplant ward. Am J Infect Control 37(8):626–630PubMedCrossRefGoogle Scholar
  390. 390.
    Loftus RW, Brindeiro BS, Kispert DP et al (2012) Reduction in intraoperative bacterial contamination of peripheral intravenous tubing through the use of a passive catheter care system. Anesth Analg 115(6):1315–1323PubMedCrossRefGoogle Scholar
  391. 391.
    Loftus RW, Patel HM, Huysman BC et al (2012) Prevention of intravenous bacterial injection from health care provider hands: the importance of catheter design and handling. Anesth Analg 115(5):1109–1119PubMedCrossRefGoogle Scholar
  392. 392.
    Munoz-Price LS, Dezfulian C, Wyckoff M et al (2012) Effectiveness of stepwise interventions targeted to decrease central catheter-associated bloodstream infections. Crit Care Med 40(5):1464–1469PubMedCrossRefGoogle Scholar
  393. 393.
    Horvath B, Norville R, Lee D, Hyde A, Gregurich M, Hockenberry M (2009) Reducing central venous catheter-related bloodstream infections in children with cancer. Oncol Nurs Forum 36(2):232–238PubMedCrossRefGoogle Scholar
  394. 394.
    Bishay M, Retrosi G, Horn V et al (2011) Chlorhexidine antisepsis significantly reduces the incidence of sepsis and septicemia during parenteral nutrition in surgical infants. J Pediatr Surg 46(6):1064–1069PubMedCrossRefGoogle Scholar
  395. 395.
    Smith JS, Kirksey KM, Becker H, Brown A (2011) Autonomy and self-efficacy as influencing factors in nurses' behavioral intention to disinfect needleless intravenous systems. J Infus Nurs 34(3):193–200PubMedCrossRefGoogle Scholar
  396. 396.
    Saint S, Kowalski CP, Banaszak-Holl J, Forman J, Damschroder L, Krein SL (2009) How active resisters and organizational constipators affect health care-acquired infection prevention efforts. Jt Comm J Qual Patient Saf 35(5):239–246PubMedCrossRefGoogle Scholar
  397. 397.
    Buchman AL, Spapperi J, Leopold P (2009) A new central venous catheter cap: decreased microbial growth and risk for catheter-related bloodstream infection. J Vasc Access 10(1):11–21PubMedCrossRefGoogle Scholar
  398. 398.
    Maki DG (2010) In vitro studies of a novel antimicrobial luer-activated needleless connector for prevention of catheter-related bloodstream infection. Clin Infect Dis 50(12):1580–1587PubMedCrossRefGoogle Scholar
  399. 399.
    Sweet MA, Cumpston A, Briggs F, Craig M, Hamadani M (2012) Impact of alcohol-impregnated port protectors and needleless neutral pressure connectors on central line-associated bloodstream infections and contamination of blood cultures in an inpatient oncology unit. Am J Infect Control 40(10):931–934PubMedCrossRefGoogle Scholar
  400. 400.
    Wright MO, Hebden JN, Allen-Bridson K, Morrell GC, Horan T (2010) Healthcare-associated infections studies project: an American Journal of Infection Control and National Healthcare Safety Network data quality collaboration. Am J Infect Control 38(5):416–418PubMedCrossRefGoogle Scholar
  401. 401.
    Gillies D, O'Riordan L, Wallen M, Morrison A, Rankin K, Nagy S (2005) Optimal timing for intravenous administration set replacement. Cochrane Database Syst Rev 4:CD003588Google Scholar
  402. 402.
    Ullman AJ, Cooke ML, Gillies D et al (2013) Optimal timing for intravascular administration set replacement. Cochrane Database Syst Rev 9:CD003588Google Scholar
  403. 403.
    Matlow AG, Kitai I, Kirpalani H et al (1999) A randomized trial of 72- versus 24-hour intravenous tubing set changes in newborns receiving lipid therapy. Infect Control Hosp Epidemiol 20(7):487–493PubMedCrossRefGoogle Scholar
  404. 404.
    Robert Koch-Institut (2016) Zu spezifischen Fragen bezüglich Rekonstitution, Zubereitung und Applikation von Arzneimitteln und Infusionslösungen sowie zur Hautantiseptik – Bericht der Arbeitsgruppe KRINKO-BfArM-RKI. Epid Bull 20:173–178Google Scholar
  405. 405.
    Bhakdi S, Kramer I, Siegel E, Jansen B, Exner M (2012) Use of quantitative microbiological analyses to trace origin of contamination of parenteral nutrition solutions. Med Microbiol Immunol 201(2):231–237PubMedCrossRefGoogle Scholar
  406. 406.
    Raad I, Hanna HA, Awad A et al (2001) Optimal frequency of changing intravenous administration sets: is it safe to prolong use beyond 72 hours? Infect Control Hosp Epidemiol 22(3):136–139PubMedCrossRefGoogle Scholar
  407. 407.
    Simon A, Fleischhack G, Wiszniewsky G, Hasan C, Bode U, Kramer MH (2006) Influence of prolonged use of intravenous administration sets in paediatric cancer patients on CVAD-related bloodstream infection rates and hospital resources. Infection 34(5):258–263PubMedCrossRefGoogle Scholar
  408. 408.
    Macias AE, de Leon SP, Huertas M et al (2008) Endemic infusate contamination and related bacteremia. Am J Infect Control 36(1):48–53PubMedCrossRefGoogle Scholar
  409. 409.
    Macias AE, Huertas M, de Leon SP et al (2010) Contamination of intravenous fluids: a continuing cause of hospital bacteremia. Am J Infect Control 38(3):217–221PubMedCrossRefGoogle Scholar
  410. 410.
    Pan A, Dolcetti L, Barosi C et al (2006) An outbreak of Serratia marcescens bloodstream infections associated with misuse of drug vials in a surgical ward. Infect Control Hosp Epidemiol 27(1):79–82PubMedCrossRefGoogle Scholar
  411. 411.
    Herbig S, Kaiser V, Maurer J, Taylor L, Thiesen J, Krämer I (2013) ADKA-Leitlinie: Aseptische Herstellung und Prüfung applikationsfertiger Parenteralia. Krankenhauspharmazie 34(2):93–106Google Scholar
  412. 412.
    Council of Europe, Committee of Ministers (2009) Resolution CM/ResAP(2011)1 on quality and safety assurance requirements for medicinal products prepared in pharmacies for the special needs of patients. In: European Directorate for the Quality of Medicines & HealthCare (EDQM) (Hrsg) Expert Workshop. Promoting standards for the quality and safety assurance of pharmacy-prepared medicinal products for the needs of patients. Proceedings. , Strasbourg, S 84–97Google Scholar
  413. 413.
    Apothekenbetriebsordnung in der Fassung der Bekanntmachung vom 26. September 1995 (BGBl. I S. 1195), die zuletzt durch Artikel 2a der Verordnung vom 6. März 2015 (BGBl. I S.  ) geändert worden ist. URL:
  414. 414.
    Pharmaceutical Inspection Convention, Pharmaceutical Inspection Cooperation Scheme (Hrsg) (2014) PIC/S PE 010-4: PIC/S Guide to Good Manufacturing Practices of preparation of medicinal products in healthcare establishmentsGoogle Scholar
  415. 415.
    Rangel-Frausto MS, Higuera-Ramirez F, Martinez-Soto J, Rosenthal VD (2010) Should we use closed or open infusion containers for prevention of bloodstream infections? Ann Clin Microbiol Antimicrob 9:6PubMedPubMedCentralCrossRefGoogle Scholar
  416. 416.
    Franzetti F, Borghi B, Raimondi F, Rosenthal VD (2009) Impact on rates and time to first central vascular-associated bloodstream infection when switching from open to closed intravenous infusion containers in a hospital setting. Epidemiol Infect 137(7):1041–1048PubMedCrossRefGoogle Scholar
  417. 417.
    Maki DG, Rosenthal VD, Salomao R, Franzetti F, Rangel-Frausto MS (2011) Impact of switching from an open to a closed infusion system on rates of central line-associated bloodstream infection: a meta-analysis of time-sequence cohort studies in 4 countries. Infect Control Hosp Epidemiol 32(1):50–58PubMedCrossRefGoogle Scholar
  418. 418.
    Lopez-Briz E, Ruiz-Garcia V (2005) [Effectiveness of heparin versus NaCl 0.9 % in central venous catheter flushing. A systematic review]. Farm Hosp 29(4):258–264PubMedCrossRefGoogle Scholar
  419. 419.
    Bertoglio S, Rezzo R, Merlo FD et al (2013) Pre-filled normal saline syringes to reduce totally implantable venous access device-associated bloodstream infection: a single institution pilot study. J Hosp Infect 84(1):85–88PubMedCrossRefGoogle Scholar
  420. 420.
    Wiersma P, Schillie S, Keyserling H et al (2010) Catheter-related polymicrobial bloodstream infections among pediatric bone marrow transplant outpatients – Atlanta, Georgia, 2007. Infect Control Hosp Epidemiol 31(5):522–527PubMedCrossRefGoogle Scholar
  421. 421.
    Krafte-Jacobs B, Sivit CJ, Mejia R, Pollack MM (1995) Catheter-related thrombosis in critically ill children: comparison of catheters with and without heparin bonding. J Pediatr 126(1):50–54PubMedCrossRefGoogle Scholar
  422. 422.
    Abdelkefi A, Achour W, Ben Othman T et al (2007) Use of heparin-coated central venous lines to prevent catheter-related bloodstream infection. J Support Oncol 5(6):273–278PubMedGoogle Scholar
  423. 423.
    Abdelkefi A, Torjman L, Ladeb S et al (2005) Randomized trial of prevention of catheter-related bloodstream infection by continuous infusion of low-dose unfractionated heparin in patients with hematologic and oncologic disease. J Clin Oncol 23(31):7864–7870PubMedCrossRefGoogle Scholar
  424. 424.
    Jack T, Boehne M, Brent BE et al (2012) In-line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med 38(6):1008–1016PubMedPubMedCentralCrossRefGoogle Scholar
  425. 425.
    Jack T, Brent BE, Boehne M et al (2010) Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med 36(4):707–711PubMedPubMedCentralCrossRefGoogle Scholar
  426. 426.
    Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6(1):2–8PubMedCrossRefGoogle Scholar
  427. 427.
    Robinson JL, Tawfik G, Saxinger L, Stang L, Etches W, Lee B (2005) Stability of heparin and physical compatibility of heparin/antibiotic solutions in concentrations appropriate for antibiotic lock therapy. J Antimicrob Chemother 56(5):951–953PubMedCrossRefGoogle Scholar
  428. 428.
    Droste JC, Jeraj HA, MacDonald A, Farrington K (2003) Stability and in vitro efficacy of antibiotic-heparin lock solutions potentially useful for treatment of central venous catheter-related sepsis. J Antimicrob Chemother 51(4):849–855PubMedCrossRefGoogle Scholar
  429. 429.
    Segarra-Newnham M, Martin-Cooper EM (2005) Antibiotic lock technique: a review of the literature. Ann Pharmacother 39(2):311–318PubMedCrossRefGoogle Scholar
  430. 430.
    Safdar N, Maki DG (2006) Use of vancomycin-containing lock or flush solutions for prevention of bloodstream infection associated with central venous access devices: a meta-analysis of prospective, randomized trials. Clin Infect Dis 43(4):474–484PubMedCrossRefGoogle Scholar
  431. 431.
    Yahav D, Rozen-Zvi B, Gafter-Gvili A, Leibovici L, Gafter U, Paul M (2008) Antimicrobial lock solutions for the prevention of infections associated with intravascular catheters in patients undergoing hemodialysis: systematic review and meta-analysis of randomized, controlled trials. Clin Infect Dis 47(1):83–93PubMedCrossRefGoogle Scholar
  432. 432.
    Snaterse M, Ruger W, Scholte Op RWJ, Lucas C (2010) Antibiotic-based catheter lock solutions for prevention of catheter-related bloodstream infection: a systematic review of randomised controlled trials. J Hosp Infect 75(1):1–11PubMedCrossRefGoogle Scholar
  433. 433.
    Parra D, Pena-Monje A, Coronado-Alvarez NM, Hernandez-Quero J, Parra-Ruiz J (2015) In vitro efficacy of daptomycin and teicoplanin combined with ethanol, clarithromycin or gentamicin as catheter lock solutions. BMC Microbiol 15:245PubMedPubMedCentralCrossRefGoogle Scholar
  434. 434.
    Aumeran C, Guyot P, Boisnoir M et al (2013) Activity of ethanol and daptomycin lock on biofilm generated by an in vitro dynamic model using real subcutaneous injection ports. Eur J Clin Microbiol Infect Dis 32(2):199–206PubMedCrossRefGoogle Scholar
  435. 435.
    Chaudhury A, Rangineni J, Venkatramana B (2012) Catheter lock technique: in vitro efficacy of ethanol for eradication of methicillin-resistant staphylococcal biofilm compared with other agents. FEMS Immunol Med Microbiol 65(2):305–308PubMedCrossRefGoogle Scholar
  436. 436.
    Qu Y, Istivan TS, Daley AJ, Rouch DA, Deighton MA (2009) Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J Med Microbiol 58(Pt 4):442–450PubMedCrossRefGoogle Scholar
  437. 437.
    Shah CB, Mittelman MW, Costerton JW et al (2002) Antimicrobial activity of a novel catheter lock solution. Antimicrob Agents Chemother 46(6):1674–1679PubMedPubMedCentralCrossRefGoogle Scholar
  438. 438.
    Traub WH, Leonhard B, Bauer D (1993) Taurolidine: in vitro activity against multiple-antibiotic-resistant, nosocomially significant clinical isolates of Staphylococcus aureus, Enterococcus faecium, and diverse Enterobacteriaceae. Chemotherapy 39(5):322–330PubMedCrossRefGoogle Scholar
  439. 439.
    Schlicht A, Fleischhack G, Herdeis C, Simon A (2009) In vitro investigation of the exposure time necessary to yield a 5 log reduction of clinicall relevant bacteria by a taurolidine containing antimicrobial catheter lock solution. Hyg Med 34(9):343–345Google Scholar
  440. 440.
    Solomon LR, Cheesbrough JS, Ebah L et al (2010) A randomized double-blind controlled trial of taurolidine-citrate catheter locks for the prevention of bacteremia in patients treated with hemodialysis. Am J Kidney Dis 55(6):1060–1068PubMedCrossRefGoogle Scholar
  441. 441.
    Taylor C, Cahill J, Gerrish M, Little J (2008) A new haemodialysis catheter-locking agent reduces infections in haemodialysis patients. J Ren Care 34(3):116–120PubMedCrossRefGoogle Scholar
  442. 442.
    Betjes MG, van Agteren M (2004) Prevention of dialysis catheter-related sepsis with a citrate-taurolidine-containing lock solution. Nephrol Dial Transplant 19(6):1546–1551PubMedCrossRefGoogle Scholar
  443. 443.
    Allon M (2004) Dialysis catheter-related bacteremia: treatment and prophylaxis. Am J Kidney Dis 44(5):779–791PubMedCrossRefGoogle Scholar
  444. 444.
    Allon M (2003) Prophylaxis against dialysis catheter-related bacteremia with a novel antimicrobial lock solution. Clin Infect Dis 36(12):1539–1544PubMedCrossRefGoogle Scholar
  445. 445.
    Quarello F, Forneris G (2002) Prevention of hemodialysis catheter-related bloodstream infection using an antimicrobial lock. Blood Purif 20(1):87–92PubMedCrossRefGoogle Scholar
  446. 446.
    Toure A, Lauverjat M, Peraldi C et al (2012) Taurolidine lock solution in the secondary prevention of central venous catheter-associated bloodstream infection in home parenteral nutrition patients. Clin Nutr 31(4):567–570PubMedCrossRefGoogle Scholar
  447. 447.
    Chu HP, Brind J, Tomar R, Hill S (2012) Significant reduction in central venous catheter-related bloodstream infections in children on HPN after starting treatment with Taurolidine line lock. J Pediatr Gastroenterol Nutr 55(4):403–407PubMedCrossRefGoogle Scholar
  448. 448.
    Wanten GJA, Bisseling TM (2011) Responding letter to editor – Taurolidine lock is highly effective in preventing catheter-related bloodstream infections in patients on home parenteral nutrition: a heparin-controlled prospective trial. Clin Nutr 30(3):401–401CrossRefGoogle Scholar
  449. 449.
    Cullis PS, McKee RF (2011) Taurolidine lock – experience from the West of Scotland. Clin Nutr 30(3):399–400PubMedCrossRefGoogle Scholar
  450. 450.
    Bisseling TM, Willems MC, Versleijen MW, Hendriks JC, Vissers RK, Wanten GJ (2010) Taurolidine lock is highly effective in preventing catheter-related bloodstream infections in patients on home parenteral nutrition: a heparin-controlled prospective trial. Clin Nutr 29(4):464–468PubMedCrossRefGoogle Scholar
  451. 451.
    Jurewitsch B, Jeejeebhoy KN (2005) Taurolidine lock: the key to prevention of recurrent catheter-related bloodstream infections. Clin Nutr 24(3):462–465PubMedCrossRefGoogle Scholar
  452. 452.
    Jurewitsch B, Lee T, Park J, Jeejeebhoy K (1998) Taurolidine 2 % as an antimicrobial lock solution for prevention of recurrent catheter-related bloodstream infections. JPEN J Parenter Enteral Nutr 22(4):242–244PubMedCrossRefGoogle Scholar
  453. 453.
    Liu H, Liu H, Deng J, Chen L, Yuan L, Wu Y (2014) Preventing catheter-related bacteremia with taurolidine-citrate catheter locks: a systematic review and meta-analysis. Blood Purif 37(3):179–187PubMedCrossRefGoogle Scholar
  454. 454.
    Bradshaw JH, Puntis JW (2008) Taurolidine and catheter-related bloodstream infection: a systematic review of the literature. J Pediatr Gastroenterol Nutr 47(2):179–186PubMedCrossRefGoogle Scholar
  455. 455.
    Zacharioudakis IM, Zervou FN, Arvanitis M, Ziakas PD, Mermel LA, Mylonakis E (2014) Antimicrobial lock solutions as a method to prevent central line-associated bloodstream infections: A meta-analysis of randomized controlled trials. Clin Infect Dis 59(12):1741–1749PubMedCrossRefGoogle Scholar
  456. 456.
    Cober MP, Johnson CE (2007) Stability of 70 % alcohol solutions in polypropylene syringes for use in ethanol-lock therapy. Am J Health Syst Pharm 64(23):2480–2482PubMedCrossRefGoogle Scholar
  457. 457.
    Chaudhary M, Bilal MF, Du W, Chu R, Rajpurkar M, McGrath EJ (2014) The impact of ethanol lock therapy on length of stay and catheter salvage in pediatric catheter-associated bloodstream infection. Clin Pediatr (Phila) 53(11):1069–1076CrossRefGoogle Scholar
  458. 458.
    Pieroni KP, Nespor C, Ng M et al (2013) Evaluation of ethanol lock therapy in pediatric patients on long-term parenteral nutrition. Nutr Clin Pract 28(2):226–231PubMedCrossRefGoogle Scholar
  459. 459.
    Rajpurkar M, McGrath E, Joyce J, Boldt-MacDonald K, Chitlur M, Lusher J (2014) Therapeutic and prophylactic ethanol lock therapy in patients with bleeding disorders. Haemophilia 20(1):52–57PubMedCrossRefGoogle Scholar
  460. 460.
    Vassallo M, Dunais B, Roger PM (2015) Antimicrobial lock therapy in central-line associated bloodstream infections: a systematic review. Infection 43(4):389–398PubMedCrossRefGoogle Scholar
  461. 461.
    Handrup MM, Fuursted K, Funch P, Moller JK, Schroder H (2012) Biofilm formation in long-term central venous catheters in children with cancer: a randomized controlled open-labelled trial of taurolidine versus heparin. APMIS 120(10):794–801PubMedCrossRefGoogle Scholar
  462. 462.
    Wolf J, Shenep JL, Clifford V, Curtis N, Flynn PM (2013) Ethanol lock therapy in pediatric hematology and oncology. Pediatr Blood Cancer 60(1):18–25PubMedCrossRefGoogle Scholar
  463. 463.
    Schilcher G, Schlagenhauf A, Schneditz D et al (2013) Ethanol causes protein precipitation – new safety issues for catheter locking techniques. PLOS ONE 8(12):e84869PubMedPubMedCentralCrossRefGoogle Scholar
  464. 464.
    Oliveira C, Nasr A, Brindle M, Wales PW (2012) Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: a meta-analysis. Pediatrics 129(2):318–329PubMedCrossRefGoogle Scholar
  465. 465.
    Mermel LA, Alang N (2014) Adverse effects associated with ethanol catheter lock solutions: a systematic review. J Antimicrob Chemother 69(10):2611–2619PubMedCrossRefGoogle Scholar
  466. 466.
    Bell AL, Jayaraman R, Vercaigne LM (2006) Effect of ethanol/trisodium citrate lock on the mechanical properties of carbothane hemodialysis catheters. Clin Nephrol 65(5):342–348PubMedCrossRefGoogle Scholar
  467. 467.
    Crnich CJ, Halfmann JA, Crone WC, Maki DG (2005) The effects of prolonged ethanol exposure on the mechanical properties of polyurethane and silicone catheters used for intravascular access. Infect Control Hosp Epidemiol 26(8):708–714PubMedCrossRefGoogle Scholar
  468. 468.
    Mouw E, Chessman K, Lesher A, Tagge E (2008) Use of an ethanol lock to prevent catheter-related infections in children with short bowel syndrome. J Pediatr Surg 43(6):1025–1029PubMedCrossRefGoogle Scholar
  469. 469.
    Opilla MT, Kirby DF, Edmond MB (2007) Use of ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients. JPEN J Parenter Enteral Nutr 31(4):302–305PubMedCrossRefGoogle Scholar
  470. 470.
    Wales PW, Kosar C, Carricato M, de Silva N, Lang K, Avitzur Y (2011) Ethanol lock therapy to reduce the incidence of catheter-related bloodstream infections in home parenteral nutrition patients with intestinal failure: preliminary experience. J Pediatr Surg 46(5):951–956PubMedCrossRefGoogle Scholar
  471. 471.
    Cober MP, Kovacevich DS, Teitelbaum DH (2011) Ethanol-lock therapy for the prevention of central venous access device infections in pediatric patients with intestinal failure. JPEN J Parenter Enteral Nutr 35(1):67–73PubMedCrossRefGoogle Scholar
  472. 472.
    John BK, Khan MA, Speerhas R et al (2012) Ethanol lock therapy in reducing catheter-related bloodstream infections in adult home parenteral nutrition patients: results of a retrospective study. JPEN J Parenter Enteral Nutr 36(5):603–610PubMedCrossRefGoogle Scholar
  473. 473.
    Tan M, Lau J, Guglielmo BJ (2014) Ethanol locks in the prevention and treatment of catheter-related bloodstream infections. Ann Pharmacother 48(5):607–615PubMedCrossRefGoogle Scholar
  474. 474.
    Perez-Granda MJ, Barrio JM, Munoz P et al (2014) Ethanol Lock therapy (E-Lock) in the prevention of Catheter-Related Bloodstream Infections (CR-BSI) after Major Heart Surgery (MHS): A randomized clinical trial. PLOS ONE 9(3):e91838PubMedPubMedCentralCrossRefGoogle Scholar
  475. 475.
    Broom JK, Krishnasamy R, Hawley CM, Playford EG, Johnson DW (2012) A randomised controlled trial of Heparin versus EthAnol Lock THerapY for the prevention of Catheter Associated infecTion in Haemodialysis patients – the HEALTHY-CATH trial. BMC Nephrol 13:146PubMedPubMedCentralCrossRefGoogle Scholar
  476. 476.
    Sanders J, Pithie A, Ganly P et al (2008) A prospective double-blind randomized trial comparing intraluminal ethanol with heparinized saline for the prevention of catheter-associated bloodstream infection in immunosuppressed haematology patients. J Antimicrob Chemother 62(4):809–815PubMedCrossRefGoogle Scholar
  477. 477.
    Infektionsschutzgesetz vom 20. Juli 2000 (BGBl. I S. 1045), das zuletzt durch Artikel 6a des Gesetzes vom 10. Dezember 2015 (BGBl. I S. 2229) geändert worden ist. URL:
  478. 478.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2001) Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung von § 23 IfSG). Vorwort des Robert Koch-Instituts zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen. Bundesgesundheitsblatt 44(5):523–536CrossRefGoogle Scholar
  479. 479.
    Robert Koch-Institut (RKI) (2013) Surveillance nosokomialer Infektionen sowie die Erfassung von Krankheitserregern mit speziellen Resistenzen und Multiresistenzen. Fortschreibung der Liste der gemäß § 4 Abs. 2 Nr. 2 Buchstabe b in Verbindung mit § 23 Abs. 4 IfSG zu erfassenden nosokomialen Infektionen und Krankheitserreger mit speziellen Resistenzen und Multiresistenzen. Bundesgesundheitsblatt 56(4):580–583CrossRefGoogle Scholar
  480. 480.
    Gastmeier P, Schwab F, Behnke M, Geffers C (2011) Wenige Blutkulturproben – wenige Infektionen. Anaestesist 60(20):902–907CrossRefGoogle Scholar
  481. 481.
    Lin MY, Hota B, Khan YM et al (2010) Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA 304(18):2035–2041PubMedCrossRefGoogle Scholar
  482. 482.
    Niedner MF (2010) The harder you look, the more you find: Catheter-associated bloodstream infection surveillance variability. Am J Infect Control 38(8):585–595PubMedCrossRefGoogle Scholar
  483. 483.
    Gastmeier P, Sohr D, Schwab F et al (2008) Ten years of KISS: the most important requirements for success. J Hosp Infect 70(Suppl 1):11–16PubMedCrossRefGoogle Scholar
  484. 484.
    Gastmeier P, Behnke M, Breier AC et al (2012) [Healthcare-associated infection rates: measuring and comparing : Experiences from the German national nosocomial infection surveillance system (KISS) and from other surveillance systems]. Bundesgesundheitsblatt 55(11–12):1363–1369CrossRefGoogle Scholar
  485. 485.
    Zuschneid I, Rucker G, Schoop R et al (2010) Representativeness of the surveillance data in the intensive care unit component of the German nosocomial infections surveillance system. Infect Control Hosp Epidemiol 31(9):934–938PubMedCrossRefGoogle Scholar
  486. 486.
    Marschall J (2008) Catheter-associated bloodstream infections: looking outside of the ICU. Am J Infect Control 36(10):S172.e5–S172.e8CrossRefGoogle Scholar
  487. 487.
    Zuschneid I, Schwab F, Geffers C, Ruden H, Gastmeier P (2003) Reducing central venous catheter-associated primary bloodstream infections in intensive care units is possible: data from the German nosocomial infection surveillance system. Infect Control Hosp Epidemiol 24(7):501–505PubMedCrossRefGoogle Scholar
  488. 488.
    Gastmeier P, Schwab F, Sohr D, Behnke M, Geffers C (2009) Reproducibility of the surveillance effect to decrease nosocomial infection rates. Infect Control Hosp Epidemiol 30(10):993–999PubMedCrossRefGoogle Scholar
  489. 489.
    Eckmanns T, Bessert J, Behnke M, Gastmeier P, Ruden H (2006) Compliance with antiseptic hand rub use in intensive care units: the hawthorne effect. Infect Control Hosp Epidemiol 27(9):931–934PubMedCrossRefGoogle Scholar
  490. 490.
    Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C (2013) [Deficits in central venous catheter associated bloodstream infection]. Dtsch Med Wochenschr 138(34–35):1711–1716PubMedGoogle Scholar
  491. 491.
    Hansen S, Schwab F, Behnke M, Geffers C, Gastmeier P (2013) [Compliance with national guidelines for the prevention of central venous catheter-associated-infections in German intensive care units]. Dtsch Med Wochenschr 138(34–35):1706–1710PubMedGoogle Scholar
  492. 492.
    Hansen S, Schwab F, Behnke M, Gastmeier P, PROHIBIT Consortium (2014) Prävention zentraler Gefäßkatheter-assoziierter Infektionen: Organisationskulturelle Aspekte in deutschen Krankenhäusern. Hyg Med 39(7/8):268–273Google Scholar
  493. 493.
    De Bono S, Heling G, Borg MA (2014) Organizational culture and its implications for infection prevention and control in healthcare institutions. J Hosp Infect 86(1):1–6PubMedCrossRefGoogle Scholar
  494. 494.
    Brannigan ET, Murray E, Holmes A (2009) Where does infection control fit into a hospital management structure? J Hosp Infect 73(4):392–396PubMedCrossRefGoogle Scholar
  495. 495.
    Griffiths P, Renz A, Hughes J, Rafferty AM (2009) Impact of organisation and management factors on infection control in hospitals: a scoping review. J Hosp Infect 73(1):1–14PubMedCrossRefGoogle Scholar
  496. 496.
    Vonberg RP, Groneberg K, Geffers C, Ruden H, Gastmeier P (2005) [Infection control measures in intensive care units: Results of the German Nosocomial Infection Surveillance System (KISS).] Anaesthesist 54(10):975–982PubMedCrossRefGoogle Scholar
  497. 497.
    Parneix P (2015) How infection control teams can assess their own performance and enhance their prestige using activity and outcome indicators for public reporting. J Hosp Infect 89(4):328–330PubMedCrossRefGoogle Scholar
  498. 498.
    Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C (2014) Time-series analysis to observe the impact of a centrally organized educational intervention on the prevention of central-line-associated bloodstream infections in 32 German intensive care units. J Hosp Infect 87(4):220–226PubMedCrossRefGoogle Scholar
  499. 499.
    Gastmeier P, Sohr D, Geffers C, Nassauer A, Daschner F, Ruden H (2000) Are nosocomial infection rates in intensive care units useful benchmark parameters? Infection 28(6):346–350PubMedCrossRefGoogle Scholar
  500. 500.
    Gurses AP, Murphy DJ, Martinez EA, Berenholtz SM, Pronovost PJ (2009) A practical tool to identify and eliminate barriers to compliance with evidence-based guidelines. Jt Comm J Qual Patient Saf 35(10):526–532PubMedCrossRefGoogle Scholar
  501. 501.
    Robert Koch-Institut (2000) Surveillance nosokomialer Infektionen sowie die Erfassung von Erregern mit speziellen Resistenzen und Multiresistenzen (§6 Abs. 3 und §23 Abs. 1 und 2 in Verbindung mit §4 Abs. 2 Nr. 2b IfSG). Rechtliche Voraussetzungen und Umsetzungsempfehlungen. Bundesgesundheitsblatt 43(11):887–890CrossRefGoogle Scholar
  502. 502.
    Zuschneid I, Sohr D, Kohlhase C et al (2002e) Accuracy of nosocomial infection (NI) data from Intensive Care Units (ICUs) within the German Nosocomial Infections Surveillance System. Fifth International Conference of the Hospital Infection Society, Edinburgh, 15–18 September. , Google Scholar
  503. 503.
    Zuschneid I, Geffers C, Sohr D et al (2007) Validation of surveillance in the intensive care unit component of the German nosocomial infections surveillance system. Infect Control Hosp Epidemiol 28(4):496–499PubMedCrossRefGoogle Scholar
  504. 504.
    Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R (2003) Administrative databases provide inaccurate data for surveillance of long-term central venous catheter-associated infections. Infect Control Hosp Epidemiol 24(12):946–949PubMedCrossRefGoogle Scholar
  505. 505.
    Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA (2011) Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol 32(11):1086–1090PubMedCrossRefGoogle Scholar
  506. 506.
    Aswani MS, Reagan J, Jin L, Pronovost PJ, Goeschel C (2011) Variation in public reporting of central line-associated bloodstream infections by state. Am J Med Qual 26(5):387–395PubMedCrossRefGoogle Scholar
  507. 507.
    Karch A, Castell S, Schwab F et al (2015) Proposing an empirically justified reference threshold for blood culture sampling rates in intensive care units. J Clin Microbiol 53(2):648–652PubMedPubMedCentralCrossRefGoogle Scholar
  508. 508.
    Sherertz RJ, Karchmer TB, Palavecino E, Bischoff W (2011) Blood drawn through valved catheter hub connectors carries a significant risk of contamination. Eur J Clin Microbiol Infect Dis 30(12):1571–1577PubMedCrossRefGoogle Scholar
  509. 509.
    Gaur AH, Miller MR, Gao C et al (2013) Evaluating application of the national healthcare safety network central line-associated bloodstream infection surveillance definition: a survey of pediatric intensive care and hematology/oncology units. Infect Control Hosp Epidemiol 34(7):663–670PubMedCrossRefGoogle Scholar
  510. 510.
    Gaur AH, Bundy DG, Gao C et al (2013) Surveillance of hospital-acquired central line-associated bloodstream infections in pediatric hematology-oncology patients: lessons learned, challenges ahead. Infect Control Hosp Epidemiol 34(3):316–320PubMedCrossRefGoogle Scholar
  511. 511.
    Thompson ND, Yeh LL, Magill SS, Ostroff SM, Fridkin SK (2013) Investigating systematic misclassification of central line-associated bloodstream infection (CLABSI) to secondary bloodstream infection during health care-associated infection reporting. Am J Med Qual 28(1):56–59PubMedCrossRefGoogle Scholar
  512. 512.
    Casey AL, Mermel LA, Nightingale P, Elliott TS (2008) Antimicrobial central venous catheters in adults: a systematic review and meta-analysis. Lancet Infect Dis 8(12):763–776PubMedCrossRefGoogle Scholar
  513. 513.
    Niel-Weise BS, Stijnen T, van den Broek PJ (2007) Anti-infective-treated central venous catheters: a systematic review of randomized controlled trials. Intensive Care Med 33(12):2058–2068PubMedCrossRefGoogle Scholar
  514. 514.
    Niel-Weise BS, Stijnen T, van den Broek PJ (2008) Anti-infective-treated central venous catheters for total parenteral nutrition or chemotherapy: a systematic review. J Hosp Infect 69(2):114–123PubMedCrossRefGoogle Scholar
  515. 515.
    Gilbert RE, Mok Q, Dwan K et al (2016) Impregnated central venous catheters for prevention of bloodstream infection in children (the CATCH trial): a randomised controlled trial. Lancet 387(10029):1732–1742PubMedCrossRefGoogle Scholar
  516. 516.
    Randolph AG, Cook DJ, Gonzales CA, Andrew M (1998) Benefit of heparin in peripheral venous and arterial catheters: systematic review and meta-analysis of randomised controlled trials. BMJ 316(7136):969–975PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Personalised recommendations