Advertisement

Prävention von Infektionen, die von Gefäßkathetern ausgehen

Hinweise zur Blutkulturdiagnostik. Informativer Anhang 1 zur Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut
Empfehlungen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Interessenkonflikt

Dieser informative Anhang wurde unter der Leitung von Prof. Dr. Arne Simon in einer interdisziplinären Arbeitsgruppe bestehend aus Prof. Dr. Marianne Abele-Horn, Dr. Axel Hamprecht, Prof. Dr. Mathias Herrmann, Priv. Doz. Dr. Achim Kaasch, Priv. Doz. Dr. Andreas Link, Prof. Dr. Martin Mielke und Priv. Doz. Dr. Lutz von Müller erarbeitet. Der informative Anhang wurde ehrenamtlich und ohne Einflussnahme kommerzieller Interessengruppen im Auftrag der Kommission für Krankenhaushygiene und Infektionsprävention KRINKO erstellt und nach ausführlicher Diskussion in der Kommission abgestimmt.

Literatur

  1. 1.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2002) Prävention Gefäßkatheter-assoziierter Infektionen. Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 25(11):907–924Google Scholar
  2. 2.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39(2):165–228PubMedCrossRefGoogle Scholar
  3. 3.
    Hentrich M, Schalk E, Schmidt-Hieber M et al (2014) Central venous catheter-related infections in hematology and oncology: 2012 updated guidelines on diagnosis, management and prevention by the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology. Ann Oncol 25(5):936–947PubMedCrossRefGoogle Scholar
  4. 4.
    Simon A, Beutel K, Trautmann M, Greiner J, Graf N (2013) Evidenzbasierte Empfehlungen zur Anwendung dauerhaft implantierter, zentralvenöser Zugänge in der pädiatrischen Onkologie, 4. Aufl. mhp, WiesbadenGoogle Scholar
  5. 5.
    Mauch H, Podbielski A, Herrmann M, et al. (Hrsg)(2007) MiQ 03a: Sepsis - Blutkulturdiagnostik - Sepsis, Endokarditis, Katheterinfektionen, Teil I. 2. Aufl., Urban und Fischer in Elsevier: München/JenaGoogle Scholar
  6. 6.
    Gastmeier P, Sohr D, Just HM, Nassauer A, Daschner F, Ruden H (2000) How to survey nosocomial infections. Infect Control Hosp Epidemiol 21(6):366–370PubMedCrossRefGoogle Scholar
  7. 7.
    Gastmeier P, Behnke M, Breier AC et al (2012) Healthcare-associated infection rates: measuring and comparing: Experiences from the German national nosocomial infection surveillance system (KISS) and from other surveillance systems]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 55(11–12):1363–1369PubMedCrossRefGoogle Scholar
  8. 8.
    Dettenkofer M, Ebner W, Bertz H et al (2003) Surveillance of nosocomial infections in adult recipients of allogeneic and autologous bone marrow and peripheral blood stem-cell transplantation. Bone Marrow Transplant 31(9):795–801PubMedCrossRefGoogle Scholar
  9. 9.
    Infektionsschutzgesetz vom 20. Juli 2000 (BGBl. I S. 1045), das zuletzt durch Artikel 6a des Gesetzes vom 10. Dezember 2015 (BGBl. I S. 2229) geändert worden ist.Google Scholar
  10. 10.
    Robert Koch-Institut (RKI) (2013) Surveillance nosokomialer Infektionen sowie die Erfassung von Krankheitserregern mit speziellen Resistenzen und Multiresistenzen. Fortschreibung der Liste der gemäß § 4 Abs. 2 Nr. 2 Buchstabe b in Verbindung mit § 23 Abs. 4 IfSG zu erfassenden nosokomialen Infektionen und Krankheitserreger mit speziellen Resistenzen und Multiresistenzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56(4):580–583CrossRefGoogle Scholar
  11. 11.
    Dudeck MA, Horan TC, Peterson KD et al (2011) National Healthcare Safety Network (NHSN) Report, data summary for 2010, device-associated module. Am J Infect Control 39(10):798–816PubMedCrossRefGoogle Scholar
  12. 12.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2001) Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen (Umsetzung von § 23 IfSG). Vorwort des Robert Koch-Instituts zur Empfehlung der Kommissionfür Krankenhaushygiene und Infektionsprävention zur Surveillance (Erfassung und Bewertung) von nosokomialen Infektionen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 44(5):523–536CrossRefGoogle Scholar
  13. 13.
    Leistner R, Hirsemann E, Bloch A, Gastmeier P, Geffers C (2014) Costs and prolonged length of stay of central venous catheter-associated bloodstream infections (CVC BSI): a matched prospective cohort study. Infection 42(1):31–36PubMedCrossRefGoogle Scholar
  14. 14.
    Hansen S, Schwab F, Schneider S, Sohr D, Gastmeier P, Geffers C (2014) Time-series analysis to observe the impact of a centrally organized educational intervention on the prevention of central-line-associated bloodstream infections in 32 German intensive care units. J Hosp Infect 87(4):220–226PubMedCrossRefGoogle Scholar
  15. 15.
    Hansen S, Schwab F, Behnke M, Gastmeier P, PROHIBIT Consortium (2014) Prävention zentraler Gefäßkatheter-assoziierter Infektionen: Organisationskulturelle Aspekte in deutschen Krankenhäusern. Hyg Med 39(7/8):268–273Google Scholar
  16. 16.
    Woeltje KF, McMullen KM, Butler AM, Goris AJ, Doherty JA (2011) Electronic surveillance for healthcare-associated central line-associated bloodstream infections outside the intensive care unit. Infect Control Hosp Epidemiol 32(11):1086–1090PubMedCrossRefGoogle Scholar
  17. 17.
    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36(5):309–332PubMedCrossRefGoogle Scholar
  18. 18.
    Centers for Disease Control and Prevention (CDC) (2011) Vital signs: central line associated blood stream infections – United States, 2001, 2008, and 2009. MMWR Morb Mortal Wkly Rep 60(8):243–248Google Scholar
  19. 19.
    Niedner MF (2010) The harder you look, the more you find: Catheter-associated bloodstream infection surveillance variability. Am J Infect Control 38(8):585–595PubMedCrossRefGoogle Scholar
  20. 20.
    Niedner MF, Huskins WC, Colantuoni E et al (2011) Epidemiology of central line-associated bloodstream infections in the pediatric intensive care unit. Infect Control Hosp Epidemiol 32(12):1200–1208PubMedCrossRefGoogle Scholar
  21. 21.
    Gastmeier P, Schwab F, Behnke M, Geffers C (2011) Wenige Blutkulturproben – wenige Infektionen. Anaestesist 60(20):902–907CrossRefGoogle Scholar
  22. 22.
    Gastmeier P, Sohr D, Schwab F et al (2008) Ten years of KISS: the most important requirements for success. J Hosp Infect 70(Suppl 1):11–16PubMedCrossRefGoogle Scholar
  23. 23.
    Beekmann SE, Diekema DJ, Doern GV (2005) Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol 26(6):559–566PubMedCrossRefGoogle Scholar
  24. 24.
    Beekmann SE, Diekema DJ, Huskins WC et al (2012) Diagnosing and reporting of central line-associated bloodstream infections. Infect Control Hosp Epidemiol 33(9):875–882PubMedCrossRefGoogle Scholar
  25. 25.
    Wright MO, Hebden JN, Allen-Bridson K, Morrell GC, Horan T (2010) Healthcare-associated infections studies project: an American Journal of Infection Control and National Healthcare Safety Network data quality collaboration. Am J Infect Control 38(5):416–418PubMedCrossRefGoogle Scholar
  26. 26.
    Zuschneid I, Geffers C, Sohr D et al (2007) Validation of surveillance in the intensive care unit component of the German nosocomial infections surveillance system. Infect Control Hosp Epidemiol 28(4):496–499PubMedCrossRefGoogle Scholar
  27. 27.
    Lin MY, Hota B, Khan YM et al (2010) Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA 304(18):2035–2041PubMedCrossRefGoogle Scholar
  28. 28.
    Aswani MS, Reagan J, Jin L, Pronovost PJ, Goeschel C (2011) Variation in public reporting of central line-associated bloodstream infections by state. Am J Med Qual 26(5):387–395PubMedCrossRefGoogle Scholar
  29. 29.
    Lemmen SW, Zolldann D, Gastmeier P, Lutticken R (2001) Implementing and evaluating a rotating surveillance system and infection control guidelines in 4 intensive care units. Am J Infect Control 29(2):89–93PubMedCrossRefGoogle Scholar
  30. 30.
    BT-Drucksache 18/3600 vom 18.12. 2014: Unterrichtung durch die Bundesregierung. Bericht der Bundesregierung über nosokomiale Infektionen und Erreger mit speziellen Resistenzen und Multiresistenzen, Deutscher BundestagGoogle Scholar
  31. 31.
    Sihler KC, Chenoweth C, Zalewski C, Wahl W, Hyzy R, Napolitano LM (2010) Catheter-related vs. catheter-associated blood stream infections in the intensive care unit: incidence, microbiology, and implications. Surg Infect (Larchmt) 11(6):529–534CrossRefGoogle Scholar
  32. 32.
    Thompson ND, Yeh LL, Magill SS, Ostroff SM, Fridkin SK (2013) Investigating systematic misclassification of central line-associated bloodstream infection (CLABSI) to secondary bloodstream infection during health care-associated infection reporting. Am J Med Qual 28(1):56–59PubMedCrossRefGoogle Scholar
  33. 33.
    Fraser TG, Gordon SM (2011) CLABSI rates in immunocompromised patients: a valuable patient centered outcome? Clin Infect Dis 52(12):1446–1450PubMedCrossRefGoogle Scholar
  34. 34.
    Gaur AH, Bundy DG, Gao C et al (2013) Surveillance of hospital-acquired central line-associated bloodstream infections in pediatric hematology-oncology patients: lessons learned, challenges ahead. Infect Control Hosp Epidemiol 34(3):316–320PubMedCrossRefGoogle Scholar
  35. 35.
    Gaur AH, Miller MR, Gao C et al (2013) Evaluating application of the national healthcare safety network central line-associated bloodstream infection surveillance definition: a survey of pediatric intensive care and hematology/oncology units. Infect Control Hosp Epidemiol 34(7):663–670PubMedCrossRefGoogle Scholar
  36. 36.
    See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND (2013) Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol 34(8):769–776PubMedCrossRefGoogle Scholar
  37. 37.
    Chen WT, Liu TM, Wu SH, Tan TD, Tseng HC, Shih CC (2009) Improving diagnosis of central venous catheter-related bloodstream infection by using differential time to positivity as a hospital-wide approach at a cancer hospital. J Infect 59(5):317–323PubMedCrossRefGoogle Scholar
  38. 38.
    Chen XX, Lo YC, Su LH, Chang CL (2015) Investigation of the case numbers of catheter-related bloodstream infection overestimated by the central line-associated bloodstream infection surveillance definition. J Microbiol Immunol Infect 48(6):625–631PubMedCrossRefGoogle Scholar
  39. 39.
    Drews BB, Sanghavi R, Siegel JD, Metcalf P, Mittal NK (2009) Characteristics of catheter-related bloodstream infections in children with intestinal failure: implications for clinical management. Gastroenterol Nurs 32(6):385–390PubMedCrossRefGoogle Scholar
  40. 40.
    Sexton DJ, Chen LF, Anderson DJ (2010) Current definitions of central line-associated bloodstream infection: is the emperor wearing clothes? Infect Control Hosp Epidemiol 31(12):1286–1289PubMedCrossRefGoogle Scholar
  41. 41.
    Scheithauer S, Hafner H, Schroder J et al (2013) Simultaneous placement of multiple central lines increases central line-associated bloodstream infection rates. Am J Infect Control 41(2):113–117PubMedCrossRefGoogle Scholar
  42. 42.
    Sagana R, Hyzy RC (2013) Achieving zero central line-associated bloodstream infection rates in your intensive care unit. Crit Care Clin 29(1):1–9PubMedCrossRefGoogle Scholar
  43. 43.
    Khalid I, Al Salmi H, Qushmaq I, Al Hroub M, Kadri M, Qabajah MR (2013) Itemizing the bundle: achieving and maintaining “zero” central line-associated bloodstream infection for over a year in a tertiary care hospital in Saudi Arabia. Am J Infect Control 41(12):1209–1213PubMedCrossRefGoogle Scholar
  44. 44.
    Exline MC, Ali NA, Zikri N et al (2013) Beyond the bundle – journey of a tertiary care medical intensive care unit to zero central line-associated bloodstream infections. Crit Care 17(2):R41PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Worth LJ, McLaws ML (2012) Is it possible to achieve a target of zero central line associated bloodstream infections? Curr Opin Infect Dis 25(6):650–657PubMedCrossRefGoogle Scholar
  46. 46.
    Boyce JM, Nadeau J, Dumigan D et al (2013) Obtaining blood cultures by venipuncture versus from central lines: impact on blood culture contamination rates and potential effect on central line-associated bloodstream infection reporting. Infect Control Hosp Epidemiol 34(10):1042–1047PubMedCrossRefGoogle Scholar
  47. 47.
    Müller A, Berner R, Bartmann P (2014) Nosokomiale Sepsis bei sehr kleinen Frühgeborenen – Diagnostik und Therapie. Monatsschr Kinderheilkd 162(5):411–419CrossRefGoogle Scholar
  48. 48.
    Penack O, Becker C, Buchheidt D et al (2014) Management of sepsis in neutropenic patients: 2014 updated guidelines from the Infectious Diseases Working Party of the German Society of Hematology and Medical Oncology (AGIHO). Ann Hematol 93(7):1083–1095PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    O’Grady NP, Barie PS, Bartlett JG et al (2008) Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med 36(4):1330–1349PubMedCrossRefGoogle Scholar
  50. 50.
    Timsit JF, Soubirou JF, Voiriot G et al (2014) Treatment of bloodstream infections in ICUs. BMC Infect Dis 14:489PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Karch A, Castell S, Schwab F et al (2015) Proposing an empirically justified reference threshold for blood culture sampling rates in intensive care units. J Clin Microbiol 53(2):648–652PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bekeris LG, Tworek JA, Walsh MK, Valenstein PN (2005) Trends in blood culture contamination: a College of American Pathologists Q-Tracks study of 356 institutions. Arch Pathol Lab Med 129(10):1222–1225PubMedGoogle Scholar
  53. 53.
    Harvey DJ, Albert S (2013) Standardized definition of contamination and evidence-based target necessary for high-quality blood culture contamination rate audit. J Hosp Infect 83(3):265–266PubMedCrossRefGoogle Scholar
  54. 54.
    Meites E, Taur Y, Marino L et al (2010) Investigation of increased rates of isolation of Bacillus species. Infect Control Hosp Epidemiol 31(12):1257–1263PubMedCrossRefGoogle Scholar
  55. 55.
    Sasahara T, Hayashi S, Morisawa Y, Sakihama T, Yoshimura A, Hirai Y (2011) Bacillus cereus bacteremia outbreak due to contaminated hospital linens. Eur J Clin Microbiol Infect Dis 30(2):219–226PubMedCrossRefGoogle Scholar
  56. 56.
    Han SB, Bae EY, Lee JW et al (2013) Clinical characteristics and antimicrobial susceptibilities of viridans streptococcal bacteremia during febrile neutropenia in patients with hematologic malignancies: a comparison between adults and children. BMC Infect Dis 13:273PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Tunkel AR, Sepkowitz KA (2002) Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis 34(11):1524–1529PubMedCrossRefGoogle Scholar
  58. 58.
    Doern CD, Burnham CA (2010) It’s not easy being green: the Viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 48(11):3829–3835PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Jindai K, Strerath MS, Hess T, Safdar N (2014) Is a single positive blood culture for Enterococcus species representative of infection or contamination? Eur J Clin Microbiol Infect Dis 33(11):1995–2003PubMedCrossRefGoogle Scholar
  60. 60.
    Steinberg JP, Robichaux C, Tejedor SC, Reyes MD, Jacob JT (2013) Distribution of pathogens in central line-associated bloodstream infections among patients with and without neutropenia following chemotherapy: evidence for a proposed modification to the current surveillance definition. Infect Control Hosp Epidemiol 34(2):171–175PubMedCrossRefGoogle Scholar
  61. 61.
    Kassar R, Hachem R, Jiang Y, Chaftari AM, Raad I (2009) Management of Bacillus bacteremia: the need for catheter removal. Medicine (Baltimore) 88(5):279–283CrossRefGoogle Scholar
  62. 62.
    Garcia P, Benitez R, Lam M et al (2004) Coagulase-negative staphylococci: clinical, microbiological and molecular features to predict true bacteraemia. J Med Microbiol 53(Pt 1):67–72PubMedCrossRefGoogle Scholar
  63. 63.
    Al Wohoush I, Rivera J, Cairo J, Hachem R, Raad I (2011) Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clin Microbiol Infect 17(4):569–571PubMedCrossRefGoogle Scholar
  64. 64.
    Senger SS, Saccozza ME, Yuce A (2007) Compatibility of pulsed-field gel electrophoresis findings and clinical criteria commonly used to distinguish between true coagulase-negative staphylococcal bacteremia and contamination. Infect Control Hosp Epidemiol 28(8):992–996PubMedCrossRefGoogle Scholar
  65. 65.
    Seo SK, Venkataraman L, DeGirolami PC, Samore MH (2000) Molecular typing of coagulase-negative staphylococci from blood cultures does not correlate with clinical criteria for true bacteremia. Am J Med 109(9):697–704PubMedCrossRefGoogle Scholar
  66. 66.
    Seybold U, Reichardt C, Halvosa JS, Blumberg HM (2009) Clonal diversity in episodes with multiple coagulase-negative Staphylococcus bloodstream isolates suggesting frequent contamination. Infection 37(3):256–260PubMedCrossRefGoogle Scholar
  67. 67.
    Favre B, Hugonnet S, Correa L, Sax H, Rohner P, Pittet D (2005) Nosocomial bacteremia: clinical significance of a single blood culture positive for coagulase-negative staphylococci. Infect Control Hosp Epidemiol 26(8):697–702PubMedCrossRefGoogle Scholar
  68. 68.
    Finkelstein R, Fusman R, Oren I, Kassis I, Hashman N (2002) Clinical and epidemiologic significance of coagulase-negative staphylococci bacteremia in a tertiary care university Israeli hospital. Am J Infect Control 30(1):21–25PubMedCrossRefGoogle Scholar
  69. 69.
    Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 49(1):1–45PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    van der Heijden YF, Miller G, Wright PW, Shepherd BE, Daniels TL, Talbot TR (2011) Clinical impact of blood cultures contaminated with coagulase-negative staphylococci at an academic medical center. Infect Control Hosp Epidemiol 32(6):623–625PubMedCrossRefGoogle Scholar
  71. 71.
    Hall KK, Lyman JA (2006) Updated review of blood culture contamination. Clin Microbiol Rev 19(4):788–802PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Washer LL, Chenoweth C, Kim HW et al (2013) Blood culture contamination: a randomized trial evaluating the comparative effectiveness of 3 skin antiseptic interventions. Infect Control Hosp Epidemiol 34(1):15–21PubMedCrossRefGoogle Scholar
  73. 73.
    Weinstein MP (2003) Blood culture contamination: persisting problems and partial progress. J Clin Microbiol 41(6):2275–2278PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Clinical and Laboratory Standards Institute (CLSI)(Ed) (2007) Principles and procedures for blood cultures: approved guideline. CLSI document M47-A. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  75. 75.
    Robert Koch-Institut (RKI) (2013) Kommentar der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Aspekte der mikrobiologischen Diagnostik im Rahmen der Prävention von nosokomialen Infektionen. Epidemiol Bull 19:171–172Google Scholar
  76. 76.
    Suwanpimolkul G, Pongkumpai M, Suankratay C (2008) A randomized trial of 2 % chlorhexidine tincture compared with 10 % aqueous povidone-iodine for venipuncture site disinfection: Effects on blood culture contamination rates. J Infect 56(5):354–359PubMedCrossRefGoogle Scholar
  77. 77.
    Gander RM, Byrd L, DeCrescenzo M, Hirany S, Bowen M, Baughman J (2009) Impact of blood cultures drawn by phlebotomy on contamination rates and health care costs in a hospital emergency department. J Clin Microbiol 47(4):1021–1024PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pavlovsky M, Press J, Peled N, Yagupsky P (2006) Blood culture contamination in pediatric patients: young children and young doctors. Pediatr Infect Dis J 25(7):611–614PubMedCrossRefGoogle Scholar
  79. 79.
    Zwang O, Albert RK (2006) Analysis of strategies to improve cost effectiveness of blood cultures. J Hosp Med 1(5):272–276PubMedCrossRefGoogle Scholar
  80. 80.
    Bates DW, Goldman L, Lee TH (1991) Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA 265(3):365–369PubMedCrossRefGoogle Scholar
  81. 81.
    Souvenir D, Anderson DE Jr., Palpant S et al (1998) Blood cultures positive for coagulase-negative staphylococci: antisepsis, pseudobacteremia, and therapy of patients. J Clin Microbiol 36(7):1923–1926PubMedPubMedCentralGoogle Scholar
  82. 82.
    Everts RJ, Vinson EN, Adholla PO, Reller LB (2001) Contamination of catheter-drawn blood cultures. J Clin Microbiol 39(9):3393–3394PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Shafazand S, Weinacker AB (2002) Blood cultures in the critical care unit: improving utilization and yield. Chest 122(5):1727–1736PubMedCrossRefGoogle Scholar
  84. 84.
    Lubbert C, John E, von Muller L (2014) Clostridium difficile infection: guideline-based diagnosis and treatment. Dtsch Arztebl Int 111(43):723–731PubMedPubMedCentralGoogle Scholar
  85. 85.
    Norberg A, Christopher NC, Ramundo ML, Bower JR, Berman SA (2003) Contamination rates of blood cultures obtained by dedicated phlebotomy vs intravenous catheter. JAMA 289(6):726–729PubMedCrossRefGoogle Scholar
  86. 86.
    Gibb AP, Hill B, Chorel B, Brant R (1997) Reduction in blood culture contamination rate by feedback to phlebotomists. Arch Pathol Lab Med 121(5):503–507PubMedGoogle Scholar
  87. 87.
    Alahmadi YM, Aldeyab MA, McElnay JC et al (2011) Clinical and economic impact of contaminated blood cultures within the hospital setting. J Hosp Infect 77(3):233–236PubMedCrossRefGoogle Scholar
  88. 88.
    Sax H, Allegranzi B, Uckay I, Larson E, Boyce J, Pittet D (2007) ‘My five moments for hand hygiene’: a user-centred design approach to understand, train, monitor and report hand hygiene. J Hosp Infect 67(1):9–21PubMedCrossRefGoogle Scholar
  89. 89.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut (RKI) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 59(9):1189–1220CrossRefGoogle Scholar
  90. 90.
    Calfee DP, Farr BM (2002) Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: a randomized trial. J Clin Microbiol 40(5):1660–1665PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Trautner BW, Clarridge JE, Darouiche RO (2002) Skin antisepsis kits containing alcohol and chlorhexidine gluconate or tincture of iodine are associated with low rates of blood culture contamination. Infect Control Hosp Epidemiol 23(7):397–401PubMedCrossRefGoogle Scholar
  92. 92.
    Madeo M, Jackson T, Williams C (2005) Simple measures to reduce the rate of contamination of blood cultures in accident and emergency. Emerg Med J 22(11):810–811PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Caldeira D, David C, Sampaio C (2011) Skin antiseptics in venous puncture-site disinfection for prevention of blood culture contamination: systematic review with meta-analysis. J Hosp Infect 77(3):223–232PubMedCrossRefGoogle Scholar
  94. 94.
    Mimoz O, Karim A, Mercat A et al (1999) Chlorhexidine compared with povidone-iodine as skin preparation before blood culture. A randomized, controlled trial. Ann Intern Med 131(11):834–837PubMedCrossRefGoogle Scholar
  95. 95.
    Marlowe L, Mistry RD, Coffin S et al (2010) Blood culture contamination rates after skin antisepsis with chlorhexidine gluconate versus povidone-iodine in a pediatric emergency department. Infect Control Hosp Epidemiol 31(2):171–176PubMedCrossRefGoogle Scholar
  96. 96.
    Madeo M, Barlow G (2008) Reducing blood-culture contamination rates by the use of a 2 % chlorhexidine solution applicator in acute admission units. J Hosp Infect 69(3):307–309PubMedCrossRefGoogle Scholar
  97. 97.
    Self WH, Speroff T, Grijalva CG et al (2013) Reducing blood culture contamination in the emergency department: an interrupted time series quality improvement study. Acad Emerg Med 20(1):89–97PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Self WH, Mickanin J, Grijalva CG et al (2014) Reducing blood culture contamination in community hospital emergency departments: a multicenter evaluation of a quality improvement intervention. Acad Emerg Med 21(3):274–282PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Maiwald M, Widmer AF, Rotter ML (2010) Chlorhexidine is not the main active ingredient in skin antiseptics that reduce blood culture contamination rates. Infect Control Hosp Epidemiol 31(10):1095–1097PubMedCrossRefGoogle Scholar
  100. 100.
    Maiwald M, Chan ES (2012) The forgotten role of alcohol: a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLOS ONE 7(9):e44277PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hall RT, Domenico HJ, Self WH, Hain PD (2013) Reducing the blood culture contamination rate in a pediatric emergency department and subsequent cost savings. Pediatrics 131(1):e292–e297PubMedCrossRefGoogle Scholar
  102. 102.
    Kim NH, Kim M, Lee S et al (2011) Effect of routine sterile gloving on contamination rates in blood culture: a cluster randomized trial. Ann Intern Med 154(3):145–151PubMedCrossRefGoogle Scholar
  103. 103.
    Ramsook C, Childers K, Cron SG, Nirken M (2000) Comparison of blood-culture contamination rates in a pediatric emergency room: newly inserted intravenous catheters versus venipuncture. Infect Control Hosp Epidemiol 21(10):649–651PubMedCrossRefGoogle Scholar
  104. 104.
    Self WH, Speroff T, McNaughton CD et al (2012) Blood culture collection through peripheral intravenous catheters increases the risk of specimen contamination among adult emergency department patients. Infect Control Hosp Epidemiol 33(5):524–526PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Isaacman DJ, Karasic RB (1990) Utility of collecting blood cultures through newly inserted intravenous catheters. Pediatr Infect Dis J 9(11):815–818PubMedCrossRefGoogle Scholar
  106. 106.
    Smart D, Baggoley C, Head J, Noble D, Wetherall B, Gordon DL (1993) Effect of needle changing and intravenous cannula collection on blood culture contamination rates. Ann Emerg Med 22(7):1164–1168PubMedCrossRefGoogle Scholar
  107. 107.
    McQuillen KK, Santucci KA, Conrad MA et al (1999) Intravenous catheter blood cultures: utility and contamination. Pediatrics 103(4):e52PubMedCrossRefGoogle Scholar
  108. 108.
    Patton RG, Schmitt T (2010) Innovation for reducing blood culture contamination: initial specimen diversion technique. J Clin Microbiol 48(12):4501–4503PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Raad II, Hohn DC, Gilbreath BJ et al (1994) Prevention of central venous catheter-related infections by using maximal sterile barrier precautions during insertion. Infect Control Hosp Epidemiol 15(4 Pt 1):231–238PubMedCrossRefGoogle Scholar
  110. 110.
    Stohl S, Benenson S, Sviri S et al (2011) Blood cultures at central line insertion in the intensive care unit: comparison with peripheral venipuncture. J Clin Microbiol 49(7):2398–2403PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Levin PD, Moss J, Stohl S et al (2013) Use of the nonwire central line hub to reduce blood culture contamination. Chest 143(3):640–645PubMedCrossRefGoogle Scholar
  112. 112.
    Lee A, Mirrett S, Reller LB, Weinstein MP (2007) Detection of bloodstream infections in adults: how many blood cultures are needed? J Clin Microbiol 45(11):3546–3548PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Niehues T (2013) The febrile child: diagnosis and treatment. Dtsch Arztebl Int 110(45):764–774PubMedPubMedCentralGoogle Scholar
  114. 114.
    Goldstein B, Giroir B, Randolph A (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6(1):2–8PubMedCrossRefGoogle Scholar
  115. 115.
    Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA (1997) Frequency of low level bacteremia in infants from birth to two months of age. Pediatr Infect Dis J 16(4):381–385PubMedCrossRefGoogle Scholar
  116. 116.
    Kellogg JA, Manzella JP, Bankert DA (2000) Frequency of low-level bacteremia in children from birth to fifteen years of age. J Clin Microbiol 38(6):2181–2185PubMedPubMedCentralGoogle Scholar
  117. 117.
    Isaacman DJ, Karasic RB, Reynolds EA, Kost SI (1996) Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr 128(2):190–195PubMedCrossRefGoogle Scholar
  118. 118.
    Gaur AH, Giannini MA, Flynn PM et al (2003) Optimizing blood culture practices in pediatric immunocompromised patients: evaluation of media types and blood culture volume. Pediatr Infect Dis J 22(6):545–552PubMedGoogle Scholar
  119. 119.
    Adamkiewicz TV (2010) Increased blood culture sensitivity in pediatric oncology patients: is it the peripheral culture or increased collected blood volume? Support Care Cancer 18(8):903PubMedCrossRefGoogle Scholar
  120. 120.
    Arendrup M, Jensen IP, Justesen T (1996) Diagnosing bacteremia at a Danish hospital using one early large blood volume for culture. Scand J Infect Dis 28(6):609–614PubMedCrossRefGoogle Scholar
  121. 121.
    Connell TG, Rele M, Cowley D, Buttery JP, Curtis N (2007) How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 119(5):891–896PubMedCrossRefGoogle Scholar
  122. 122.
    Gonsalves WI, Cornish N, Moore M, Chen A, Varman M (2009) Effects of volume and site of blood draw on blood culture results. J Clin Microbiol 47(11):3482–3485PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Shulman RJ, Phillips S, Laine L et al (1993) Volume of blood required to obtain central venous catheter blood cultures in infants and children. JPEN J Parenter Enteral Nutr 17(2):177–179PubMedCrossRefGoogle Scholar
  124. 124.
    Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP (1996) Volume of blood required to detect common neonatal pathogens. J Pediatr 129(2):275–278PubMedCrossRefGoogle Scholar
  125. 125.
    Dien Bard J, McElvania TeKippe E (2016) Diagnosis of bloodstream infections in children. J Clin Microbiol 54(6):1418–1424PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Mermel LA, Maki DG (1993) Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 119(4):270–272PubMedCrossRefGoogle Scholar
  127. 127.
    Denno J, Gannon M (2013) Practical steps to lower blood culture contamination rates in the emergency department. J Emerg Nurs 39(5):459–464PubMedCrossRefGoogle Scholar
  128. 128.
    Halm M, Hickson T, Stein D, Tanner M, VandeGraaf S (2011) Blood cultures and central catheters: is the “easiest way” best practice? Am J Crit Care 20(4):335–338PubMedCrossRefGoogle Scholar
  129. 129.
    Sherertz RJ, Karchmer TB, Palavecino E, Bischoff W (2011) Blood drawn through valved catheter hub connectors carries a significant risk of contamination. Eur J Clin Microbiol Infect Dis 30(12):1571–1577PubMedCrossRefGoogle Scholar
  130. 130.
    Mathew A, Gaslin T, Dunning K, Ying J (2009) Central catheter blood sampling: the impact of changing the needleless caps prior to collection. J Infus Nurs 32(4):212–218PubMedCrossRefGoogle Scholar
  131. 131.
    Beutz M, Sherman G, Mayfield J, Fraser VJ, Kollef MH (2003) Clinical utility of blood cultures drawn from central vein catheters and peripheral venipuncture in critically ill medical patients. Chest 123(3):854–861PubMedCrossRefGoogle Scholar
  132. 132.
    McBryde ES, Tilse M, McCormack J (2005) Comparison of contamination rates of catheter-drawn and peripheral blood cultures. J Hosp Infect 60(2):118–121PubMedCrossRefGoogle Scholar
  133. 133.
    DesJardin JA, Falagas ME, Ruthazer R et al (1999) Clinical utility of blood cultures drawn from indwelling central venous catheters in hospitalized patients with cancer. Ann Intern Med 131(9):641–647PubMedCrossRefGoogle Scholar
  134. 134.
    Tanguy M, Seguin P, Laviolle B, Desbordes L, Malledant Y (2005) Hub qualitative blood culture is useful for diagnosis of catheter-related infections in critically ill patients. Intensive Care Med 31(5):645–648PubMedCrossRefGoogle Scholar
  135. 135.
    Falagas ME, Kazantzi MS, Bliziotis IA (2008) Comparison of utility of blood cultures from intravascular catheters and peripheral veins: a systematic review and decision analysis. J Med Microbiol 57(Pt 1):1–8PubMedCrossRefGoogle Scholar
  136. 136.
    Dwivedi S, Bhalla R, Hoover DR, Weinstein MP (2009) Discarding the initial aliquot of blood does not reduce contamination rates in intravenous-catheter-drawn blood cultures. J Clin Microbiol 47(9):2950–2951PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Everts R, Harding H (2004) Catheter-drawn blood cultures: is withdrawing the heparin lock beneficial? Pathology 36(2):170–173PubMedCrossRefGoogle Scholar
  138. 138.
    Randolph AG, Brun-Buisson C, Goldmann D (2005) Identification of central venous catheter-related infections in infants and children. Pediatr Crit Care Med 6(3 Suppl):S19–S24PubMedCrossRefGoogle Scholar
  139. 139.
    Schiffer CA, Mangu PB, Wade JC et al (2013) Central venous catheter care for the patient with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 31(10):1357–1370PubMedCrossRefGoogle Scholar
  140. 140.
    Scheinemann K, Ethier MC, Dupuis LL et al (2010) Utility of peripheral blood cultures in bacteremic pediatric cancer patients with a central line. Support Care Cancer 18(8):913–919PubMedCrossRefGoogle Scholar
  141. 141.
    Handrup MM, Moller JK, Rutkjaer C, Schroder H (2015) Importance of blood cultures from peripheral veins in pediatric patients with cancer and a central venous line. Pediatr Blood Cancer 62(1):99–102PubMedCrossRefGoogle Scholar
  142. 142.
    Simon A, Graf N, Furtwangler R (2013) Results of a Multicentre survey evaluating clinical practice of port and broviac management in paediatric oncology. Klin Padiatr 225(3):145–151PubMedCrossRefGoogle Scholar
  143. 143.
    Manian FA (2009) IDSA guidelines for the diagnosis and management of intravascular catheter-related bloodstream infection. Clin Infect Dis 49(11):1770–1771PubMedCrossRefGoogle Scholar
  144. 144.
    Mermel LA, Allon M, Bouza E et al (2009) Reply to Collins et al. and Manian. Clin Infect Dis 49(11):1771–1772CrossRefGoogle Scholar
  145. 145.
    Cuellar-Rodriguez J, Connor D, Murray P, Gea-Banacloche J (2014) Discrepant results from sampling different lumens of multilumen catheters: the case for sampling all lumens. Eur J Clin Microbiol Infect Dis 33(5):831–835PubMedCrossRefGoogle Scholar
  146. 146.
    Krause R, Valentin T, Salzer H et al (2013) Which lumen is the source of catheter-related bloodstream infection in patients with multi-lumen central venous catheters? Infection 41(1):49–52PubMedCrossRefGoogle Scholar
  147. 147.
    Dobbins BM, Catton JA, Kite P, McMahon MJ, Wilcox MH (2003) Each lumen is a potential source of central venous catheter-related bloodstream infection. Crit Care Med 31(6):1688–1690PubMedCrossRefGoogle Scholar
  148. 148.
    Catton JA, Dobbins BM, Kite P et al (2005) In situ diagnosis of intravascular catheter-related bloodstream infection: a comparison of quantitative culture, differential time to positivity, and endoluminal brushing. Crit Care Med 33(4):787–791PubMedCrossRefGoogle Scholar
  149. 149.
    Gaur AH, Flynn PM, Heine DJ, Giannini MA, Shenep JL, Hayden RT (2005) Diagnosis of catheter-related bloodstream infections among pediatric oncology patients lacking a peripheral culture, using differential time to detection. Pediatr Infect Dis J 24(5):445–449PubMedCrossRefGoogle Scholar
  150. 150.
    Gaur AH, Flynn PM, Giannini MA, Shenep JL, Hayden RT (2003) Difference in time to detection: a simple method to differentiate catheter-related from non-catheter-related bloodstream infection in immunocompromised pediatric patients. Clin Infect Dis 37(4):469–475PubMedCrossRefGoogle Scholar
  151. 151.
    Martinez JA, DesJardin JA, Aronoff M, Supran S, Nasraway SA, Snydman DR (2002) Clinical utility of blood cultures drawn from central venous or arterial catheters in critically ill surgical patients. Crit Care Med 30(1):7–13PubMedCrossRefGoogle Scholar
  152. 152.
    Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS (1997) Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol 35(3):563–565PubMedPubMedCentralGoogle Scholar
  153. 153.
    Resar RK (2006) Making noncatastrophic health care processes reliable: Learning to walk before running in creating high-reliability organizations. Health Serv Res 41(4 Pt 2):1677–1689PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Youssef D, Shams W, Bailey B, O’Neil TJ, Al-Abbadi MA (2012) Effective strategy for decreasing blood culture contamination rates: the experience of a Veterans Affairs Medical Centre. J Hosp Infect 81(4):288–291PubMedCrossRefGoogle Scholar
  155. 155.
    Pronovost P, Needham D, Berenholtz S et al (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355(26):2725–2732PubMedCrossRefGoogle Scholar
  156. 156.
    Pronovost P, Weast B, Rosenstein BJ et al (2005) Implementing and validating a comprehensive unit-based safety program. J Patient Saf 1(1):33–40CrossRefGoogle Scholar
  157. 157.
    Pronovost PJ, Berenholtz SM, Needham DM (2008) Translating evidence into practice: a model for large scale knowledge translation. BMJ 337:a1714PubMedCrossRefGoogle Scholar
  158. 158.
    Gurses AP, Murphy DJ, Martinez EA, Berenholtz SM, Pronovost PJ (2009) A practical tool to identify and eliminate barriers to compliance with evidence-based guidelines. Jt Comm J Qual Patient Saf 35(10):526–532PubMedCrossRefGoogle Scholar
  159. 159.
    Sawyer M, Weeks K, Goeschel CA et al (2010) Using evidence, rigorous measurement, and collaboration to eliminate central catheter-associated bloodstream infections. Crit Care Med 38(8 Suppl):S292–S298PubMedCrossRefGoogle Scholar
  160. 160.
    Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC (2009) Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci 4:50PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Damschroder LJ, Banaszak-Holl J, Kowalski CP, Forman J, Saint S, Krein SL (2009) The role of the champion in infection prevention: results from a multisite qualitative study. Qual Saf Health Care 18(6):434–440PubMedCrossRefGoogle Scholar
  162. 162.
    Rijnders BJ, Peetermans WE, Verwaest C, Wilmer A, Van Wijngaerden E (2004) Watchful waiting versus immediate catheter removal in ICU patients with suspected catheter-related infection: a randomized trial. Intensive Care Med 30(6):1073–1080PubMedCrossRefGoogle Scholar
  163. 163.
    Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M (1987) Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 147(5):873–877PubMedCrossRefGoogle Scholar
  164. 164.
    Quilici N, Audibert G, Conroy MC et al (1997) Differential quantitative blood cultures in the diagnosis of catheter-related sepsis in intensive care units. Clin Infect Dis 25(5):1066–1070PubMedCrossRefGoogle Scholar
  165. 165.
    Safdar N, Fine JP, Maki DG (2005) Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 142(6):451–466PubMedCrossRefGoogle Scholar
  166. 166.
    Gahlot R, Nigam C, Kumar V, Yadav G, Anupurba S (2014) Catheter-related bloodstream infections. Int J Crit Illn Inj Sci 4(2):162–167PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Raad I, Hanna HA, Alakech B, Chatzinikolaou I, Johnson MM, Tarrand J (2004) Differential time to positivity: a useful method for diagnosing catheter-related bloodstream infections. Ann Intern Med 140(1):18–25PubMedCrossRefGoogle Scholar
  168. 168.
    Seifert H, Cornely O, Seggewiss K et al (2003) Bloodstream infection in neutropenic cancer patients related to short-term nontunnelled catheters determined by quantitative blood cultures, differential time to positivity, and molecular epidemiological typing with pulsed-field gel electrophoresis. J Clin Microbiol 41(1):118–123PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Schwetz I, Hinrichs G, Reisinger EC, Krejs GJ, Olschewski H, Krause R (2007) Delayed processing of blood samples influences time to positivity of blood cultures and results of Gram stain-acridine orange leukocyte Cytospin test. J Clin Microbiol 45(8):2691–2694PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Bouza E, Alcala L, Munoz P, Martin-Rabadan P, Guembe M, Rodriguez-Creixems M (2013) Can microbiologists help to assess catheter involvement in candidaemic patients before removal? Clin Microbiol Infect 19(2):E129–E135PubMedCrossRefGoogle Scholar
  171. 171.
    Park KH, Lee MS, Lee SO et al (2014) Diagnostic usefulness of differential time to positivity for catheter-related candidemia. J Clin Microbiol 52(7):2566–2572PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Rijnders BJ, Verwaest C, Peetermans WE et al (2001) Difference in time to positivity of hub-blood versus nonhub-blood cultures is not useful for the diagnosis of catheter-related bloodstream infection in critically ill patients. Crit Care Med 29(7):1399–1403PubMedCrossRefGoogle Scholar
  173. 173.
    Blot F, Schmidt E, Nitenberg G et al (1998) Earlier positivity of central-venous- versus peripheral-blood cultures is highly predictive of catheter-related sepsis. J Clin Microbiol 36(1):105–109PubMedPubMedCentralGoogle Scholar
  174. 174.
    Abdelkefi A, Achour W, Ben Othman T et al (2005) Difference in time to positivity is useful for the diagnosis of catheter-related bloodstream infection in hematopoietic stem cell transplant recipients. Bone Marrow Transplant 35(4):397–401PubMedCrossRefGoogle Scholar
  175. 175.
    Bouza E, Alvarado N, Alcala L, Perez MJ, Rincon C, Munoz P (2007) A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawal. Clin Infect Dis 44(6):820–826PubMedCrossRefGoogle Scholar
  176. 176.
    Al Wohoush I, Cairo J, Rangaraj G, Granwehr B, Hachem R, Raad I (2010) Comparing quantitative culture of a blood sample obtained through the catheter with differential time to positivity in establishing a diagnosis of catheter-related bloodstream infection. Infect Control Hosp Epidemiol 31(10):1089–1091PubMedCrossRefGoogle Scholar
  177. 177.
    Kaasch AJ, Rieg S, Hellmich M, Kern WV, Seifert H (2014) Differential time to positivity is not predictive for central line-related Staphylococcus aureus bloodstream infection in routine clinical care. J Infect 68(1):58–61PubMedCrossRefGoogle Scholar
  178. 178.
    Seifert H, Wisplinghoff H, Kaasch A et al (2008) [Epidemiology, course and prognosis of Staphylococcus aureus bacteremia – Preliminary results from the INSTINCT (INvasive STaphylococcus aureus INfection CohorT) cohort]. Dtsch Med Wochenschr 133(8):340–345PubMedCrossRefGoogle Scholar
  179. 179.
    Krause R, Valentin T, Honigl M, Zollner-Schwetz I (2014) Differential time to positivity is not predictive for central line-related Staphylococcus aureus bloodstream infection in routine clinical care. J Infect 69(3):293–294PubMedCrossRefGoogle Scholar
  180. 180.
    Ekkelenkamp MB, van der Bruggen T, van de Vijver DA, Wolfs TF, Bonten MJ (2008) Bacteremic complications of intravascular catheters colonized with Staphylococcus aureus. Clin Infect Dis 46(1):114–118PubMedCrossRefGoogle Scholar
  181. 181.
    Lopez-Cortes LE, Del Toro MD, Galvez-Acebal J et al (2013) Impact of an evidence-based bundle intervention in the quality-of-care management and outcome of Staphylococcus aureus bacteremia. Clin Infect Dis 57(9):1225–1233PubMedCrossRefGoogle Scholar
  182. 182.
    Acuna M, O’Ryan M, Cofre J et al (2008) Differential time to positivity and quantitative cultures for noninvasive diagnosis of catheter-related blood stream infection in children. Pediatr Infect Dis J 27(8):681–685PubMedCrossRefGoogle Scholar
  183. 183.
    Mermel LA (2011) What is the predominant source of intravascular catheter infections? Clin Infect Dis 52(2):211–212PubMedCrossRefGoogle Scholar
  184. 184.
    O’Flaherty N, Crowley B (2015) How to use central venous catheter tip cultures. Arch Dis Child Educ Pract Ed 100(2):69–74PubMedCrossRefGoogle Scholar
  185. 185.
    Sherertz RJ, Heard SO, Raad II (1997) Diagnosis of triple-lumen catheter infection: comparison of roll plate, sonication, and flushing methodologies. J Clin Microbiol 35(3):641–646PubMedPubMedCentralGoogle Scholar
  186. 186.
    Slobbe L, El Barzouhi A, Boersma E, Rijnders BJ (2009) Comparison of the roll plate method to the sonication method to diagnose catheter colonization and bacteremia in patients with long-term tunnelled catheters: a randomized prospective study. J Clin Microbiol 47(4):885–888PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Maki DG, Weise CE, Sarafin HW (1977) A semiquantitative culture method for identifying intravenous-catheter-related infection. N Engl J Med 296(23):1305–1309PubMedCrossRefGoogle Scholar
  188. 188.
    Erb S, Frei R, Schregenberger K, Dangel M, Nogarth D, Widmer AF (2014) Sonication for diagnosis of catheter-related infection is not better than traditional roll-plate culture: A prospective cohort study with 975 central venous catheters. Clin Infect Dis 59(4):541–544PubMedCrossRefGoogle Scholar
  189. 189.
    Salzman MB, Isenberg HD, Shapiro JF, Lipsitz PJ, Rubin LG (1993) A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J Infect Dis 167(2):487–490PubMedCrossRefGoogle Scholar
  190. 190.
    Mahieu LM, De Dooy JJ, De Muynck AO, Van Melckebeke G, Ieven MM, Van Reempts PJ (2001) Microbiology and risk factors for catheter exit-site and -hub colonization in neonatal intensive care unit patients. Infect Control Hosp Epidemiol 22(6):357–362PubMedCrossRefGoogle Scholar
  191. 191.
    Mahieu LM, De Dooy JJ, Lenaerts AE, Ieven MM, De Muynck AO (2001) Catheter manipulations and the risk of catheter-associated bloodstream infection in neonatal intensive care unit patients. J Hosp Infect 48(1):20–26PubMedCrossRefGoogle Scholar
  192. 192.
    Peterson LR, Smith BA (2015) Nonutility of catheter tip cultures for the diagnosis of central line-associated bloodstream infection. Clin Infect Dis 60(3):492–493PubMedCrossRefGoogle Scholar
  193. 193.
    Mermel LA (2015) Catheter tip cultures: are they really relegated to the archives of historical medical interest? Clin Infect Dis 60(6):975PubMedCrossRefGoogle Scholar
  194. 194.
    van Eck van der Sluijs A, Oosterheert JJ, Ekkelenkamp MB, Hoepelman IM, Peters EJ (2012) Bacteremic complications of intravascular catheter tip colonization with Gram-negative micro-organisms in patients without preceding bacteremia. Eur J Clin Microbiol Infect Dis 31(6):1027–1033PubMedCrossRefGoogle Scholar
  195. 195.
    Hetem DJ, de Ruiter SC, Buiting AG et al (2011) Preventing Staphylococcus aureus bacteremia and sepsis in patients with Staphylococcus aureus colonization of intravascular catheters: a retrospective multicenter study and meta-analysis. Medicine (Baltimore) 90(4):284–288CrossRefGoogle Scholar
  196. 196.
    Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ (2011) Is central venous catheter tips’ colonization with multi-drug resistant Acinetobacter baumannii a predictor for bacteremia? Clin Infect Dis 52(8):1080–1082PubMedCrossRefGoogle Scholar
  197. 197.
    Apisarnthanarak A, Apisarnthanarak P, Warren DK, Fraser VJ (2012) Is central venous catheter tip colonization with Pseudomonas aeruginosa a predictor for subsequent bacteremia? Clin Infect Dis 54(4):581–583PubMedCrossRefGoogle Scholar
  198. 198.
    Templeton A, Schlegel M, Fleisch F et al (2008) Multilumen central venous catheters increase risk for catheter-related bloodstream infection: prospective surveillance study. Infection 36(4):322–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Personalised recommendations