Skip to main content
Log in

Qualität von Biomaterialien im Biobanking von Flüssig- und Gewebeproben

Quality of biomaterials in liquid- and tissue-biobanking

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Innerhalb der letzten Jahre wurden sowohl national als auch international zahlreiche Biobanken etabliert, die verschiedenste Kollektive humaner Biomaterialien und assoziierter phänotypischer Daten sammeln, aufbereiten und für Forschungszwecke zur Verfügung stellen. Vor dem Hintergrund der teilweise großen Heterogenität sowohl in der Struktur als auch in der Prozesslandschaft dieser Biobanken stellt sich die Frage nach der Vergleichbarkeit der Qualität der eingelagerten Bioproben und ihrer tatsächlichen Nutzbarkeit für die wissenschaftliche Forschung sowie der Interoperabilität von Biobanken. Im Folgenden soll daher ein Überblick zum Einfluss von Biobankprozessen auf die Probenqualität und über Möglichkeiten zur Qualitätssicherung für Forschungsbiobanken gegeben werden. Der Schwerpunkt liegt hierbei auf Biobanken die Flüssig- und Gewebeproben beinhalten. Beleuchtet werden zum einen die Rahmenbedingungen und der Einfluss präanalytischer Variablen auf die Qualität und Nutzbarkeit von Bioproben, darüber hinaus werden Möglichkeiten zur Qualitätssicherung dargestellt und deren Limitationen sowie mögliche Alternativen diskutiert. Da sowohl national als auch international großer Konsens darüber besteht, dass eine evidenzbasierte Standardisierung und Harmonisierung insbesondere in Bezug auf Qualitätsaspekte im Biobanking dringend erforderlich ist, werden im letzten Teil des Beitrags kurz die derzeit stattfindenden Normungsaktivitäten zur Entwicklung und Implementierung eines ISO-Standards für Biobanken dargestellt.

Abstract

During the last years, many biobanks that collect and provide biomaterials as well as associated phenotypical data have been established on national and international levels. However, due to the heterogeneity in structure and process landscape between biobanks, quality issues arise, which might affect equivalence of sample quality and thus usability of biomaterials for scientific research projects as well as interoperability of biobanks.

Here, we will give an overview on the influence of biobanking procedures on sample quality and on potential quality control measures for research biobanks, mainly focusing on tissue and liquid biomaterials. General infrastructural requirements as well as the influence of preanalytical variables affecting sample quality and usability are described and opportunities and drawbacks of different quality assurance procedures are discussed. As there is increasing consensus on national and international levels that evidence-based standardization and harmonization of biobank structures and workflows are urgently needed for quality-assured biobanking, recent activities in the development and implementation of an ISO Standard for biobanks will be illustrated in the last section of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Begley CG, Ioannidis JP (2015) Reproducibility in science: improving the standard for basic and preclinical research. Circ Res 116(1):116–126. doi:10.1161/CIRCRESAHA.114.303819

    Article  CAS  PubMed  Google Scholar 

  2. Freedman LP, Inglese J (2014) The increasing urgency for standards in basic biologic research. Cancer Res 74(15):4024–4029. doi:10.1158/0008-5472.CAN-14-0925

    Article  CAS  PubMed  Google Scholar 

  3. Macleod MR, Michie S, Roberts I et al (2014) Biomedical research: increasing value, reducing waste. Lancet 383(9912):101–104. doi:10.1016/S0140-6736(13)62329-6

    Article  PubMed  Google Scholar 

  4. Hallmans G, Vaught JB (2011) Best practices for establishing a biobank. Methods Mol Biol 675:241–260. doi:10.1007/978-1-59745-423-013

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann S, Guadagni F, Moore H, Betsou International Society For Biological And Environmental Repositories Isber Working Group On Biospecimen Science F et al (2012) Standard preanalytical coding for biospecimens: review and implementation of the Sample PREanalytical Code (SPREC). Biopreserv Biobank 10(4):366–374. doi:10.1089/bio.2012.0012

    Article  PubMed  Google Scholar 

  6. Betsou F, Lehmann S, Ashton G, International Society for Biological and Environmental Repositories Working Group on Biospecimen Science et al (2010) Standard preanalytical coding for biospecimens: defining the sample PREanalytical code. Cancer Epidemiol Biomarkers Prev 19(4):1004–1011. doi:10.1158/1055-9965.EPI-09-1268

    Article  CAS  PubMed  Google Scholar 

  7. Simeon-Dubach D, Burt AD, Hall PA (2012) Quality really matters: the need to improve specimen quality in biomedical research. J Pathol 228(4):431–433. doi:10.1002/path.4117

    Article  PubMed  Google Scholar 

  8. Simeon-Dubach D, Moore HM (2014) BIO comes into the cold to adopt BRISQ. Biopreserv Biobank 12(4):223–224. doi:10.1089/bio.2014.1241

    Article  PubMed  Google Scholar 

  9. Metanomics Health GmbH (2015) MxP® Quality Control Plasma. http://www.metanomics-health.com/en/mxp-quality-control.html. Zugegriffen: 26. Okt. 2015

  10. Mintzer JL, Kronenthal CJ, Kelly V et al (2013) Preparedness for a natural disaster: how Coriell planned for hurricane Sandy. Biopreserv Biobank 11(4):216–220. doi:10.1089/bio.2013.0035

    Article  PubMed  Google Scholar 

  11. Ellervik C, Vaught J (2015) Preanalytical variables affecting the integrity of human biospecimens in biobanking. Clin Chem 61(7):914–934. doi:10.1373/clinchem.2014.228783

    Article  CAS  PubMed  Google Scholar 

  12. Bowen RA, Remaley AT (2014) Interferences from blood collection tube components on clinical chemistry assays. Biochem Med (Zagreb) 24(1):31–44. doi:10.11613/BM.2014.006

    Article  CAS  Google Scholar 

  13. Bowen RA, Sattayapiwat A, Gounden V et al (2014) Blood collection tube-related alterations in analyte concentrations in quality control material and serum specimens. Clin Biochem 47(3):150–157. doi:10.1016/j.clinbiochem.2013.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ahlgrim C, Pottgiesser T, Robinson N et al (2010) Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int J Lab Hematol 32(5):506–511. doi:10.1111/j.1751-553X.2009.01213.x

    Article  CAS  PubMed  Google Scholar 

  15. Lippi G, Salvagno GL, Montagnana M et al (2006) Influence of the needle bore size used for collecting venous blood samples on routine clinical chemistry testing. Clin Chem Lab Med 44(8):1009–1014. doi:10.1515/CCLM.2006.172

    Article  CAS  PubMed  Google Scholar 

  16. Reneke J, Etzell J, Leslie S et al (1998) Prolonged prothrombin time and activated partial thromboplastin time due to underfilled specimen tubes with 109 mmol/L (3.2 %) citrate anticoagulant. Am J Clin Pathol 109(6):754–757

    CAS  PubMed  Google Scholar 

  17. Ridefelt P, Akerfeldt T, Helmersson-Karlqvist J (2014) Increased plasma glucose levels after change of recommendation from NaF to citrate blood collection tubes. Clin Biochem 47(7–8):625–628. doi:10.1016/j.clinbiochem.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  18. Lima-Oliveira G, Salvagno GL, Danese E et al (2015) Sodium citrate blood contamination by K2 -ethylenediaminetetraacetic acid (EDTA): impact on routine coagulation testing. Int J Lab Hematol 37(3):403–409. doi:10.1111/ijlh.12301

    Article  CAS  PubMed  Google Scholar 

  19. Streichert T, Otto B, Schnabel C et al (2011) Determination of hemolysis thresholds by the use of data loggers in pneumatic tube systems. Clin Chem 57(10):1390–1397. doi:10.1373/clinchem.2011.167932

    Article  CAS  PubMed  Google Scholar 

  20. Kavsak PA, Mansour M, Wang L et al (2012) Assessing pneumatic tube systems with patient-specific populations and laboratory-derived criteria. Clin Chem 58(4):792–795. doi:10.1373/clinchem.2011.179044

    Article  CAS  PubMed  Google Scholar 

  21. Gaye A, Peakman T, Tobin MD et al (2014) Understanding the impact of pre-analytic variation in haematological and clinical chemistry analytes on the power of association studies. Int J Epidemiol 43(5):1633–1644. doi:10.1093/ije/dyu127

    Article  PubMed Central  PubMed  Google Scholar 

  22. Moore HM, Kelly A, Jewell SD et al (2011) Biospecimen reporting for improved study quality. Biopreserv Biobank 9(1):57–70. doi:10.1089/bio.2010.0036

    Article  PubMed Central  PubMed  Google Scholar 

  23. Nanni U, Spila A, Riondino S et al (2011) RFID as a new ICT tool to monitor specimen life cycle and quality control in a biobank. Int J Biol Markers 26(2):129–135. doi:10.5301/JBM.2011.8323

    Article  PubMed  Google Scholar 

  24. Ruan L, Song Y, Fan J et al (2014) The Shanghai biobanking DNA quality control program. Biopreserv Biobank 12(4):259–264. doi:10.1089/bio.2014.0019

    Article  CAS  PubMed  Google Scholar 

  25. Betsou F, Gunter E, Clements J, DeSouza Y, Goddard KA, Guadagni F, Yan W, Skubitz A, Somiari S, Yeadon T, Chuaqui R (2013) Identification of evidence-based biospecimen quality-control tools: a report of the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group. J Mol Diagn 15(1):3–16. doi:10.1016/j.jmoldx.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  26. Lengelle J, Panopoulos E, Betsou F (2008) Soluble CD40 ligand as a biomarker for storage-related preanalytic variations of human serum. Cytokine 44(2):275–282. doi:10.1016/j.cyto.2008.08.010

    Article  CAS  PubMed  Google Scholar 

  27. Findeisen P, Sismanidis D, Riedl M et al (2005) Preanalytical impact of sample handling on proteome profiling experiments with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 51(12):2409–2411. doi:10.1373/clinchem.2005.054585

    Article  CAS  PubMed  Google Scholar 

  28. Findeisen P, Thumfart JO, Costina V et al (2013) MS-based monitoring of proteolytic decay of synthetic reporter peptides for quality control of plasma and serum specimens. Am J Clin Pathol 140(3):314–323. doi:10.1309/AJCPOS9Z5KVZSFSC

    Article  PubMed  Google Scholar 

  29. Kamlage B, Maldonado SG, Bethan B et al (2014) Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin Chem 60(2):399–412. doi:10.1373/clinchem.2013.211979

    Article  CAS  PubMed  Google Scholar 

  30. Anton G, Wilson R, Yu ZH et al (2015) Pre-analytical sample quality: metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS One 10(3):e0121495. doi:10.1371/journal.pone.0121495

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hewitt SM, Lewis FA, Cao Y et al (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 132(12):1929–1935. doi:10.1043/1543-2165-132.12.1929

    PubMed  Google Scholar 

  32. Steg A, Vickers SM, Eloubeidi M et al (2007) Hedgehog pathway expression in heterogeneous pancreatic adenocarcinoma: implications for the molecular analysis of clinically available biopsies. Diagn Mol Pathol 16(4):229–237. doi:10.1097/PDM.0b013e31811edc7e

    Article  CAS  PubMed  Google Scholar 

  33. Steg A, Wang W, Blanquicett C et al (2006) Multiple gene expression analyses in paraffin-embedded tissues by TaqMan low-density array: application to hedgehog and Wnt pathway analysis in ovarian endometrioid adenocarcinoma. J Mol Diagn 8(1):76–83. doi:10.2353/jmoldx.2006.040402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zhou JH, Sahin AA, Myers JN (2015) Biobanking in genomic medicine. Arch Pathol Lab Med 139(6):812–818. doi:10.5858/arpa.2014-0261-RA

    Article  PubMed  Google Scholar 

  35. Olert J, Wiedorn K-H, Goldmann T et al (2001) HOPE fixation: a novel fixing method and paraffin-embedding technique for human soft tissues. Pathol Res Pract 197(12):823–826. doi:http://dx.doi.org/10.1078/0344-0338-00166

  36. Herpel E, Koleganova N, Schreiber B et al (2012) Structural requirements of research tissue banks derived from standardized project surveillance. Virchows Arch 461(1):79–86. doi:10.1007/s00428-012-1258-3

    Article  CAS  PubMed  Google Scholar 

  37. Myles R, Massett HA, Comey G et al (2011) Stakeholder research on biospecimen needs and reactions to the development of a national cancer human biobank by the National Cancer Institute. J Natl Cancer Inst Monogr 2011(42):16–23. doi:10.1093/jncimonographs/lgr008

    Article  PubMed  Google Scholar 

  38. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3. doi:10.1186/1471-2199-7-3

    Article  PubMed Central  PubMed  Google Scholar 

  39. Bell WC, Sexton KC, Grizzle WE (2010) Organizational issues in providing high-quality human tissues and clinical information for the support of biomedical research. Methods Mol Biol 576:1–30. doi:10.1007/978-1-59745-545-91

    Article  CAS  PubMed  Google Scholar 

  40. Betsou F, Barnes R, Burke T et al (2009) Human biospecimen research: experimental protocol and quality control tools. Cancer Epidemiol Biomarkers Prev 18(4):1017–1025. doi:10.1158/1055-9965.EPI-08-1231

    Article  PubMed  Google Scholar 

  41. Carter A, Betsou F (2011) Quality assurance in cancer biobanking. Biopreserv Biobank 9(2):157–163. doi:10.1089/bio.2010.0031

    Article  PubMed  Google Scholar 

  42. Chaigneau C, Cabioch T, Beaumont K et al (2007) Serum biobank certification and the establishment of quality controls for biological fluids: examples of serum biomarker stability after temperature variation. Clin Chem Lab Med 45(10):1390–1395. doi:10.1515/CCLM.2007.160

    Article  CAS  PubMed  Google Scholar 

  43. Dorr D, Stracke F, Zimmermann H (2012) Noninvasive quality control of cryopreserved samples. Biopreserv Biobank 10(6):529–531. doi:10.1089/bio.2012.0011

    Article  PubMed Central  PubMed  Google Scholar 

  44. Grizzle WE, Sexton KC, Bell WC (2008) Quality assurance in tissue resources supporting biomedical research. Cell Preserv Technol 6(2):113–118. doi:10.1089/cpt.2008.9993

    Article  PubMed Central  PubMed  Google Scholar 

  45. Herpel E, Rocken C, Manke H et al (2010) Quality management and accreditation of research tissue banks: experience of the National Center for Tumor Diseases (NCT) Heidelberg. Virchows Arch 457(6):741–747. doi:10.1007/s00428-010-0998-1

    Article  PubMed  Google Scholar 

  46. Kiehntopf M, Krawczak M (2011) Biobanking and international interoperability: samples. Hum Genet 130(3):369–376. doi:10.1007/s00439-011-1068-8

    Article  CAS  PubMed  Google Scholar 

  47. Malm J, Fehniger TE, Danmyr P et al (2013) Developments in biobanking workflow standardization providing sample integrity and stability. J Proteomics 95:38–45. doi:10.1016/j.jprot.2013.06.035

    Article  CAS  PubMed  Google Scholar 

  48. McQueen MJ, Keys JL, Bamford K, Hall K (2014) The challenge of establishing, growing and sustaining a large biobank: a personal perspective. Clin Biochem 47(4–5):239–244. doi:10.1016/j.clinbiochem.2013.11.017

    Article  CAS  PubMed  Google Scholar 

  49. ISO (2013) ISO/TC 276 Biotechnology. http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=4514241. Zugegriffen: 18. Aug. 2015

  50. Nosek BA, Alter G, Banks GC et al (2015) SCIENTIFIC STANDARDS. Promoting an open research culture. Science 348(6242):1422–1425. doi:10.1126/science.aab2374

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kiehntopf.

Ethics declarations

Interessenkonflikt

M. Kiehntopf, S. Schmitt und E. Herpel geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herpel, E., Schmitt, S. & Kiehntopf, M. Qualität von Biomaterialien im Biobanking von Flüssig- und Gewebeproben. Bundesgesundheitsbl. 59, 325–335 (2016). https://doi.org/10.1007/s00103-015-2294-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-015-2294-3

Schlüsselwörter

Keywords

Navigation