S3-Leitlinie zur intensivmedizinischen Versorgung herzchirurgischer Patienten

Hämodynamisches Monitoring und Herz-Kreislauf – ein Update
  • M. Habicher
  • T. Zajonz
  • M. Heringlake
  • A. Böning
  • S. Treskatsch
  • U. Schirmer
  • A. Markewitz
  • M. Sander
Leitlinien und Empfehlungen
  • 172 Downloads

Zusammenfassung

Im Januar dieses Jahres wurde ein Update der „S3-Leitlinie zur intensivmedizinischen Versorgung herzchirurgischer Patienten – Hämodynamisches Monitoring und Herz-Kreislauf“ durch die AWMF veröffentlicht. Das Update ist eine Weiterentwicklung der Leitlinien aus den Jahren 2006 und 2011. Die Leitlinie umfasst 9 Kapitel, die sich neben den verschiedenen Monitoring-Verfahren auch mit den Fragen nach der Volumentherapie und vasoaktiven und inotropen Substanzen beschäftigt und Zielparameter der Herz-Kreislauf-Therapie definiert. Im vorliegenden Beitrag werden die wichtigsten Neuerungen der umfangreichen Leitlinie dargestellt.

Schlüsselwörter

Intensivmedizin Herzchirurgie Hämodynamisches Monitoring Volumentherapie Positiv inotrope und vasoaktive Substanzen 

Abkürzungen

AKI

akutes Nierenversagen

AWMF

Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften

BÄK

Bundesärztekammer

CABG

„coronary artery bypass grafting“

DGAI

Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin

DGF

Deutsche Gesellschaft für Fachkrankenpflege

DGTHG

Deutsche Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie

DIVI

Deutsche interdisziplinäre Vereinigung für Intensivmedizin

EKG

Elektrokardiogramm

GEDVI

globaler endiastolischer Volumenindex

GoR

„grade of recommendation“, Empfehlungsgrad

LCOS

Low-cardiac-output-Syndrom

LL

Leitlinie

LV-EDAI

„left ventricular enddiastolic area index“

LVEF

linksventrikuläre Ejektionsfraktion

MAD

mittlerer arterieller Blutdruck

PAK

Pulmonaliskatheter

PAOP

„pulmonary arterial occlusion pressure“

PPV

„pulse pressure variation“

PVR

„peripheral vascular resistence“

SVI

Schlagvolumenindex

SVR

„systemic vascular resistence“

SVV

Schlagvolumenvarianz

S(z)vO2

(zentral-)venöse Sauerstoffsättigung

ZVD

zentraler Venendruck

S3 guidelines on intensive medical care of cardiac surgery patients

Hemodynamic monitoring and cardiovascular system—an update

Abstract

An update of the S3- guidelines for treatment of cardiac surgery patients in the intensive care unit, hemodynamic monitoring and cardiovascular system was published by the Association of Scientific Medical Societies in Germany (AWMF) in January 2018. This publication updates the guidelines from 2006 and 2011. The guidelines include nine sections that in addition to different methods of hemodynamic monitoring also reviews the topic of volume therapy as well as vasoactive and inotropic drugs. Furthermore, the guidelines also define the goals for cardiovascular treatment. This article describes the most important innovations of these comprehensive guidelines.

Keywords

Intensive care medicine Cardiothoracic surgery Hemodynamic monitoring Volume therapy Positive inotropic and vasoactive drugs 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Habicher gibt an, Honorare für Vortragstätigkeiten von Pulsion Medical Systems und Edwards Lifesciences erhalten zu haben. M. Heringlake gibt an, Honorare für Beratertätigkeiten oder Vortragstätigkeiten von Covidien- Medtronic, Orion Pharma, Tenax Pharma und Gambro Hospal erhalten zu haben. Weiterhin gibt M. Heringlake an, finanzielle Zuwendungen (Drittmittel) für Forschungsvorhaben von Air Liquide Sante erhalten zu haben. A. Böning gibt an, Honorare für Vortragstätigkeiten von Maquet AG, Bayer, Orion Pharma erhalten zu haben. S. Treskatsch gibt an, Honorare im Rahmen von Gutachtertätigkeiten oder Vortagstätigkeiten von Carinopharm und Edwards Lifesciences erhalten zu haben. Weiterhin gibt S. Treskatsch an, finanzielle Zuwendungen (Drittmittel) für Forschungsvorhaben von B. Braun, Biosense Webster und ImaCor erhalten zu haben. M. Sander gibt an, Honorare im Rahmen von Gutachtertätigkeiten oder Vortagstätigkeiten von Ratiopharm, Massimo, Amomed, Edwards Lifesciences, Pulsion Medical Systems und Fresenius erhalten zu haben. Weiterhin gibt M. Sander an, finanzielle Zuwendungen (Drittmittel) für Forschungsvorhaben von Edwards Lifesciences, Pulsion Medical Systems und The Medicine Company erhalten zu haben. T. Zajonz, U. Schirmer und A. Markewitz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Deutscher Ärzte-Verlag GmbH (2014) Querschnittsleitlinien zur Therapie mit Blutkomponenten und Plasmaderivaten.Herausgegeben vom Vorstand der Bundesärztekammer auf Empfehlung des Wissenschaftlichen BeiratsGoogle Scholar
  2. 2.
    American Society of Anesthesiologists and Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography (2010) Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology 112:1084–1096Google Scholar
  3. 3.
    Annane D, Siami S, Jaber S et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310:1809–1817CrossRefPubMedGoogle Scholar
  4. 4.
    Aya HD, Cecconi M, Hamilton M, Rhodes A (2013) Goal-directed therapy in cardiac surgery: a systematic review and meta-analysis. Br J Anaesth 110:510–517CrossRefPubMedGoogle Scholar
  5. 5.
    Bein B, Worthmann F, Tonner PH et al (2004) Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth 18:185–189CrossRefPubMedGoogle Scholar
  6. 6.
    Chen Q‑H, Zheng R‑Q, Lin H et al (2017) Effect of levosimendan on prognosis in adult patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care 21(1):253.  https://doi.org/10.1186/s13054-017-1848-1 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cholley B, Caruba T, Grosjean S et al (2017) Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass. JAMA 318:548–549CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Denault A, Lamarche Y, Rochon A et al (2014) Innovative approaches in the perioperative care of the cardiac surgical patient in the operating room and intensive care unit. Can J Cardiol 30:459–477CrossRefGoogle Scholar
  9. 9.
    Erb J, Beutlhauser T, Feldheiser A et al (2014) Influence of levosimendan on organ dysfunction in patients with severely reduced left ventricular function undergoing cardiac surgery. J Int Med Res 42:750–764CrossRefPubMedGoogle Scholar
  10. 10.
    Funcke S, Sander M, Goepfert MS et al (2016) Practice of hemodynamic monitoring and management in German, Austrian, and Swiss intensive care units: the multicenter cross-sectional ICU-CardioMan Study. Ann Intensive Care 6:49CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Geerts B, de Wilde R, Aarts L, Jansen J (2011) Pulse contour analysis to assess hemodynamic response to passive leg raising. J Cardiothorac Vasc Anesth 25:48–52.  https://doi.org/10.1053/j.jvca.2010.09.013 CrossRefPubMedGoogle Scholar
  12. 12.
    Gillies MA, Habicher M, Jhanji S et al (2014) Incidence of postoperative death and acute kidney injury associated with i. v. 6 % hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth 112:25–34CrossRefPubMedGoogle Scholar
  13. 13.
    Goepfert MS, Richter HP, Zu Eulenburg C et al (2013) Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology 119:824–836CrossRefPubMedGoogle Scholar
  14. 14.
    Guarracino F, Heringlake M, Cholley B et al (2017) The use of levosimendan in cardiac surgery. J Cardiovasc Pharmacol.  https://doi.org/10.1097/fjc.0000000000000551 PubMedCentralGoogle Scholar
  15. 15.
    Hajjar LA, Vincent J‑L, Barbosa Gomes Galas FR et al (2017) Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology 126:85–93CrossRefPubMedGoogle Scholar
  16. 16.
    Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112:1392–1402CrossRefPubMedGoogle Scholar
  17. 17.
    Hillis LD, Smith PK, Anderson JL et al (2011) 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: executive summary. J Am Coll Cardiol 58:2584–2614CrossRefGoogle Scholar
  18. 18.
    Holm J, Håkanson E, Vánky F, Svedjeholm R (2011) Mixed venous oxygen saturation predicts short- and long-term outcome after coronary artery bypass grafting surgery: a retrospective cohort analysis. Br J Anaesth 107:344–350CrossRefPubMedGoogle Scholar
  19. 19.
    Hu BY, Laine GA, Wang S, Solis RT (2012) Combined central venous oxygen saturation and lactate as markers of occult hypoperfusion and outcome following cardiac surgery. J Cardiothorac Vasc Anesth 26:52–57CrossRefPubMedGoogle Scholar
  20. 20.
    Kim J‑Y, Joung K‑W, Kim K‑M et al (2015) Relationship between a perioperative intravenous fluid administration strategy and acute kidney injury following off-pump coronary artery bypass surgery: an observational study. Crit Care 19:350CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laine GA, Hu BY, Wang S et al (2013) Isolated high lactate or low central venous oxygen saturation after cardiac surgery and association with outcome. J Cardiothorac Vasc Anesth 27:1271–1276CrossRefPubMedGoogle Scholar
  22. 22.
    Landoni G, Lomivorotov VV, Alvaro G et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376:2021–2031CrossRefPubMedGoogle Scholar
  23. 23.
    Levin RL, Degrange MA, Porcile R et al (2008) The calcium sensitizer levosimendan gives superior results to dobutamine in postoperative low cardiac output syndrome. Rev Esp Cardiol 61:471–479.  https://doi.org/10.1016/S1885-5857(08)60160-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness?: a systematic review of the literature and the tale of seven mares. Chest 134:172–178CrossRefPubMedGoogle Scholar
  25. 25.
    Marik PE, Cavallazzi R (2013) Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med 41:1774–1781CrossRefPubMedGoogle Scholar
  26. 26.
    Mehta RH, Leimberger JD, van Diepen S et al (2017) Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med 376:2032–2042CrossRefPubMedGoogle Scholar
  27. 27.
    Neto AS, Júnior APN, Cardoso SO et al (2012) Vasopressin and terlipressin in adult vasodilatory shock: a systematic review and meta-analysis of nine randomized controlled trials. Crit Care 16:R154CrossRefGoogle Scholar
  28. 28.
    Nogueira PM, Mendonça-Filho HT, Campos LA et al (2010) Central venous saturation: a prognostic tool in cardiac surgery patients. J Intensive Care Med 25:111–116CrossRefPubMedGoogle Scholar
  29. 29.
    Pedersen T, Møller AM (2001) How to use evidence-based medicine in anaesthesiology. Acta Anaesthesiol Scand 45:267–274CrossRefPubMedGoogle Scholar
  30. 30.
    Perz S, Uhlig T, Kohl M et al (2011) Low and „supranormal“ central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med 37:52–59CrossRefPubMedGoogle Scholar
  31. 31.
    Polito A, Parisini E, Ricci Z et al (2011) Vasopressin for treatment of vasodilatory shock: an ESICM systematic review and meta-analysis. Intensive Care Med 38:9–19CrossRefPubMedGoogle Scholar
  32. 32.
    Putzu A, Clivio S, Belletti A, Cassina T (2017) Perioperative levosimendan in cardiac surgery: a systematic review with meta-analysis and trial sequential analysis. Int J Cardiol 251:22–31.  https://doi.org/10.1016/j.ijcard.2017.10.077 CrossRefPubMedGoogle Scholar
  33. 33.
    Sanfilippo F, Knight JB, Scolletta S et al (2017) Levosimendan for patients with severely reduced left ventricular systolic function and/or low cardiac output syndrome undergoing cardiac surgery: a systematic review and meta-analysis. Crit Care 21(1):252.  https://doi.org/10.1186/s13054-017-1849-0 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saw MM, Chandler B, Ho KM (2012) Benefits and risks of using gelatin solution as a plasma expander for perioperative and critically ill patients: a meta-analysis. Anaesth Intensive Care 40:17–32PubMedGoogle Scholar
  35. 35.
    Smolle K‑H, Schmid M, Prettenthaler H, Weger C (2015) The accuracy of the CNAP®Device compared with invasive radial artery measurements for providing continuous noninvasive arterial blood pressure readings at a medical intensive care unit. Anesth Analg 121:1508–1516CrossRefPubMedGoogle Scholar
  36. 36.
    Treskatsch S, Balzer F, Geyer T et al (2015) Early levosimendan administration is associated with decreased mortality after cardiac surgery. J Crit Care 30:859.e1–859.e6CrossRefGoogle Scholar
  37. 37.
    Trof RJ, Danad I, Reilingh MW et al (2011) Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care 15:R73CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wagner JY, Negulescu I, Schöfthaler M et al (2015) Continuous noninvasive arterial pressure measurement using the volume clamp method: an evaluation of the CNAP device in intensive care unit patients. J Clin Monit Comput 29:807–813CrossRefPubMedGoogle Scholar
  39. 39.
    Williams JB, Peterson ED, Wojdyla D et al (2014) Central venous pressure after coronary artery bypass surgery: does it predict postoperative mortality or renal failure? J Crit Care 29:1006–1010CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Winterhalter M, Antoniou T, Loukanov T (2010) Management of adult patients with perioperative pulmonary hypertension: technical aspects and therapeutic options. Cardiology 116:3–9CrossRefPubMedGoogle Scholar
  41. 41.
    Yazigi A, Khoury E, Hlais S et al (2012) Pulse pressure variation predicts fluid responsiveness in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 26:387–390CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Z, Xu X, Ye S, Xu L (2014) Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol 40:845–853CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • M. Habicher
    • 1
    • 2
  • T. Zajonz
    • 1
  • M. Heringlake
    • 3
  • A. Böning
    • 4
  • S. Treskatsch
    • 2
  • U. Schirmer
    • 5
  • A. Markewitz
    • 6
  • M. Sander
    • 1
  1. 1.Klinik für Anästhesiologie, operative Intensivmedizin und SchmerztherapieUniversitätsklinikum GießenGießenDeutschland
  2. 2.Klinik für Anästhesiologie mit Schwerpunkt operative IntensivmedizinCharité – Universitätsmedizin Berlin, Charité Campus Mitte und Campus Virchow KlinikumBerlinDeutschland
  3. 3.Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum Schleswig-HolsteinLübeckDeutschland
  4. 4.Klinik für Herz- und GefäßchirurgieUniversitätsklinikum GießenGießenDeutschland
  5. 5.Herz- und Diabeteszentrum NRW Institut für AnästhesiologieUniversitätsklinik der Ruhr-Universität BochumBad OeynhausenDeutschland
  6. 6.Klinik für Herz- und GefäßchirurgieBundeszentralwehrkrankenhaus KoblenzKoblenzDeutschland

Personalised recommendations