Advertisement

Der Anaesthesist

, Volume 67, Issue 4, pp 246–254 | Cite as

Epigenetik

Wichtiges für Anästhesisten, Schmerz- und Intensivmediziner
  • A.-K. Reinhold
  • E. Jentho
  • S. T. Schäfer
  • M. Bauer
  • H. L. Rittner
Leitthema
  • 758 Downloads

Zusammenfassung

Epigenetik, die Wissenschaft, die sich mit der geänderten Ablesung des Genoms ohne Veränderung der Gene selbst beschäftigt, gelangt wissenschaftlich zunehmend in den Fokus. Unterschieden werden Veränderungen an der DNA von Modifikationen der Histone und nichtkodierenden RNA, die die messenger (m)RNA verändern. Epigenetische Modifikationen können durch Lebensumstände oder andere äußere Faktoren ausgelöst werden und somit das Auftreten von Erkrankungen beeinflussen. Die Epigenetik ist für Anästhesisten, Schmerzmediziner und Intensivmediziner von besonderem Interesse, weil anästhesiologische Medikamente einen längerfristigen Einfluss auf die Proteintranskription haben und so beispielsweise zur Chronifizierung von postoperativen Schmerzen sowie zu Veränderungen der Neurokognition nach Narkose oder der Immunreaktion bei Sepsis führen können. Die veränderte Expression nichtkodierender microRNA bei perioperativ relevanten Vorerkrankungen, wie z. B. dem Herzinfarkt, verändert ist, prädestiniert sie als potenzielle prognostische Marker für das perioperative Risiko. Ferner gibt es Möglichkeiten, epigenetische Veränderungen durch Lebensstil und bestimmte Medikamente zu beeinflussen. In diesem Übersichtsbeitrag werden exemplarisch einige anästhesie-, intensivmedizin- und schmerzmedizinrelevante Erkrankungen und der Einfluss der Epigenetik auf diese dargestellt.

Schlüsselwörter

Histone MicroRNA Epigenetik Sepsis Schmerz 

Epigenetics

Important aspects for anesthesiologists, pain and intensive care physicians

Abstract

Epigenetics, i.e. an altered reading of the genome without altering the genes themselves is a growing scientific field. A distinction is made between changes in the DNA by modification of the histones and non-coding RNA that alter the messenger (m)RNAs. Epigenetic modifications can be triggered by personal circumstances or other external factors and therefore influence the occurrence of diseases. Epigenetics are therefore of particular interest to anesthesiologists, pain specialists and intensive care physicians, as anesthetic drugs may have a long-term influence on protein transcription leading for example to alterations in neurocognition after anesthesia, chronification of postoperative pain and immune response in sepsis. Non-coding microRNAs known to be altered in a variety of perioperatively relevant diseases e. g. heart infarct, might serve as prognostic factors of perioperative outcome. Moreover, there are ways to influence epigenetic changes through life style and certain medications. In this review article, examples of anesthesia, intensive care and pain medicine-relevant diseases and the influence of epigenetics on them are presented.

Keywords

Histone MicroRNAs Epigenetic Sepsis Pain 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A.-K. Reinhold, E. Jentho, S.T. Schäfer, M. Bauer und H.L. Rittner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Agrawal RP, Goswami J, Jain S et al (2009) Management of diabetic neuropathy by sodium valproate and glyceryl trinitrate spray: a prospective double-blind randomized placebo-controlled study. Diabetes Res Clin Pract 83:371–378CrossRefPubMedGoogle Scholar
  2. 2.
    Akbarian S, Rios M, Liu RJ et al (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J Neurosci 22:4153–4162CrossRefPubMedGoogle Scholar
  3. 3.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  4. 4.
    Almutawaa W, Kang NH, Pan Y et al (2014) Induction of neurotrophic and differentiation factors in neural stem cells by valproic acid. Basic Clin Pharmacol Toxicol 115:216–221CrossRefPubMedGoogle Scholar
  5. 5.
    Archer SL, Marsboom G, Kim GH et al (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Arts RJ, Novakovic B, Ter HR et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:807–819CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bai G, Ambalavanar R, Wei D et al (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bekkering S, Quintin J, Joosten LA et al (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34:1731–1738CrossRefPubMedGoogle Scholar
  9. 9.
    Bekkering S, Blok BA, Joosten LA et al (2016) In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol 23:926–933CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Benz F, Roy S, Trautwein C et al (2016) Circulating microRNas as biomarkers for sepsis. Int J Mol Sci.  https://doi.org/10.3390/ijms17010078 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bolkier Y, Nevo-Caspi Y, Salem Y et al (2016) Micro-RNA-208a, -208b, and -499 as biomarkers for myocardial damage after cardiac surgery in children. Pediatr Crit Care Med 17:e193–e197CrossRefPubMedGoogle Scholar
  12. 12.
    Bomsztyk K, Mar D, An D et al (2015) Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care 19:225CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Buchheit T, Van de Ven T, Shaw A (2012) Epigenetics and the transition from acute to chronic pain. Pain Med 13:1474–1490CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cakmakkaya OS, Kolodzie K, Apfel CC et al (2014) Anaesthetic techniques for risk of malignant tumour recurrence. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD008877.pub2 PubMedGoogle Scholar
  15. 15.
    Castellano S, Kuck D, Sala M et al (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325CrossRefPubMedGoogle Scholar
  16. 16.
    Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen J, Liu Z, Yang Y (2014) In vitro screening of LPS-induced miRNAs in leukocytes derived from cord blood and their possible roles in regulating TLR signals. Pediatr Res 75:595–602CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng SC, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chinn GA, Sasaki Russell JM, Sall JW (2016) Is a short anesthetic exposure in children safe? Time will tell: a focused commentary of the GAS and PANDA trials. Ann Transl Med 4:408CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Coleman AE, McNeil N, Kovalchuck AL et al (2012) Cellular exposure to muscle relaxants and propofol could lead to genomic instability in vitro. J Biomed Res 26:117–124CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dalla Massara L, Osuru HP, Oklopcic A et al (2016) General anesthesia causes epigenetic histone modulation of c‑Fos and brain-derived neurotrophic factor, target genes important for neuronal development in the immature rat hippocampus. Anesthesiology 124:1311–1327CrossRefPubMedGoogle Scholar
  22. 22.
    Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250CrossRefPubMedGoogle Scholar
  23. 23.
    Diorio J, Meaney MJ (2007) Maternal programming of defensive responses through sustained effects on gene expression. J Psychiatry Neurosci 32:275–284PubMedPubMedCentralGoogle Scholar
  24. 24.
    Doxaki C, Kampranis SC, Eliopoulos AG et al (2015) Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J Immunol 195:5750–5761CrossRefPubMedGoogle Scholar
  25. 25.
    Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463CrossRefPubMedGoogle Scholar
  26. 26.
    Essandoh K, Fan GC (2014) Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta 1842:2155–2162CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Evers S, Pothmann R, Uberall M et al (2002) Treatment of idiopathic headache in childhood – recommendations of the German Migraine and Headache Society (DMKG). Schmerz 16:48–56CrossRefPubMedGoogle Scholar
  28. 28.
    Fletcher D, Stamer UM, Pogatzki-Zahn E et al (2015) Chronic postsurgical pain in Europe: an observational study. Eur J Anaesthesiol 32:725–734CrossRefPubMedGoogle Scholar
  29. 29.
    Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–978CrossRefPubMedGoogle Scholar
  30. 30.
    Gao M, Wang X, Zhang X et al (2015) Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 195:672–682CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Genda Y, Arai M, Ishikawa M et al (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan(R) Low Density Array study. Int J Mol Med 31:129–137CrossRefPubMedGoogle Scholar
  32. 32.
    Goto G, Hori Y, Ishikawa M et al (2014) Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep 9:1715–1722CrossRefPubMedGoogle Scholar
  33. 33.
    Hammer P, Banck MS, Amberg R et al (2010) mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain. Genome Res 20:847–860CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefPubMedGoogle Scholar
  35. 35.
    Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hu D, Flick RP, Zaccariello MJ et al (2017) Association between exposure of young children to procedures requiring general anesthesia and learning and behavioral outcomes in a population-based birth cohort. Anesthesiology 127:227–240CrossRefPubMedGoogle Scholar
  37. 37.
    Jentho E, Bodden M, Schulz C et al (2017) microRNA-125a-3p is regulated by MyD88 in Legionella pneumophila infection and targets NTAN1. PLoS ONE 12:e176204CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jiang XL, Du BX, Chen J et al (2014) MicroRNA-34a negatively regulates anesthesia-induced hippocampal apoptosis and memory impairment through FGFR1. Int J Clin Exp Pathol 7:6760–6767PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kleinnijenhuis J, Quintin J, Preijers F et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kleinnijenhuis J, Quintin J, Preijers F et al (2014) Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 6:152–158CrossRefPubMedGoogle Scholar
  42. 42.
    Kreth S, Hubner M, Hinske LC (2018) MicroRNas as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg 126(2):670.  https://doi.org/10.1213/ANE.0000000000002444 CrossRefPubMedGoogle Scholar
  43. 43.
    Kuehl LK, Michaux GP, Richter S et al (2010) Increased basal mechanical pain sensitivity but decreased perceptual wind-up in a human model of relative hypocortisolism. Pain 149:539–546CrossRefPubMedGoogle Scholar
  44. 44.
    Kusuda R, Cadetti F, Ravanelli MI et al (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liang DY, Li X, Clark JD (2013) Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain 14:36–47CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lin D, Liu J, Cottrell JE et al (2017) Early-life sevoflurane targets brain region specific microRNAs throughout development. American Society of Anesthesiologists Annual Meeting Boston 2017.Google Scholar
  47. 47.
    Lindholm ME, Marabita F, Gomez-Cabrero D et al (2014) An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 9:1557–1569CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lirk P, Berger R, Hollmann MW et al (2012) Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 109:200–207CrossRefPubMedGoogle Scholar
  49. 49.
    Lirk P, Hollmann MW, Fleischer M et al (2014) Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth 113(Suppl 1):i32–i38CrossRefPubMedGoogle Scholar
  50. 50.
    Lirk P, Fiegl H, Weber NC et al (2015) Epigenetics in the perioperative period. Br J Pharmacol 172:2748–2755CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu F, Nie C, Zhao N et al (2017) MiR-155 alleviates septic lung injury by inducing autophagy via inhibition of transforming growth factor-beta-activated binding protein 2. Shock 48:61–68CrossRefPubMedGoogle Scholar
  52. 52.
    Lyn-Kew K, Rich E, Zeng X et al (2010) IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis. PLoS ONE 5:e11145CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Manners MT, Ertel A, Tian Y et al (2016) Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury. Epigenetics Chromatin 9:23CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Matsushita Y, Araki K, Omotuyi O et al (2013) HDAC inhibitors restore C‑fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol 170:991–998CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Migräne- D, e. V. uK (2016) Stellungnahme und Argumentationshilfe zum „OFF-LABEL-USE“ in der Kopfschmerztherapie Bd. 2017Google Scholar
  56. 56.
    Mohammad F, Mondal T, Kanduri C (2009) Epigenetics of imprinted long noncoding RNAs. Epigenetics 4:277–286CrossRefGoogle Scholar
  57. 57.
    Nahid MA, Pauley KM, Satoh M et al (2009) miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem 284:34590–34599CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Netea MG, Joosten LA, van der Meer JW et al (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15:630–642CrossRefPubMedGoogle Scholar
  59. 59.
    Netea MG, Joosten LA, Latz E et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Niederberger E (2014) Epigenetics and pain. Anaesthesist 63:63–69CrossRefPubMedGoogle Scholar
  61. 61.
    Novakovic B, Habibi E, Wang SY et al (2016) beta-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167:1354–1368.e14CrossRefPubMedGoogle Scholar
  62. 62.
    O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175CrossRefPubMedGoogle Scholar
  63. 63.
    Paananen M, O’Sullivan P, Straker L et al (2015) A low cortisol response to stress is associated with musculoskeletal pain combined with increased pain sensitivity in young adults: a longitudinal cohort study. Arthritis Res Ther 17:355CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Painter RC, de Rooij SR, Bossuyt PM et al (2006) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84:322–327 (quiz 466-327)PubMedGoogle Scholar
  65. 65.
    Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721–727CrossRefPubMedGoogle Scholar
  66. 66.
    Phiel CJ, Zhang F, Huang EY et al (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741CrossRefPubMedGoogle Scholar
  67. 67.
    van der Poll T, van de Veerdonk FL, Scicluna BP et al (2017) The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420CrossRefPubMedGoogle Scholar
  68. 68.
    Quintin J, Saeed S, Martens JHA et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232CrossRefPubMedGoogle Scholar
  69. 69.
    Robertson KD, Uzvolgyi E, Liang G et al (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27:2291–2298CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rump K, Caroline H, Unterberg M et al (2017) Propofol führt zu epigenetischen Veränderungen an Immunzellen, S 1–4  https://doi.org/10.1111/j.1399 Google Scholar
  71. 71.
    Saeed S, Quintin J, Kerstens HH et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Thangavel J, Malik AB, Elias HK et al (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237–2249CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tran L, Schulkin J, Ligon CO et al (2015) Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 20:1219–1231CrossRefPubMedGoogle Scholar
  75. 75.
    Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74:ftw18CrossRefPubMedGoogle Scholar
  76. 76.
    Twaroski DM, Yan Y, Olson JM et al (2014) Down-regulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121:786–800CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Waddington CH (1942) Canalisation of development and the inheritance of acquired characters. Nature 150:563–564CrossRefGoogle Scholar
  78. 78.
    Wang JF, Yu ML, Yu G et al (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 394:184–188CrossRefPubMedGoogle Scholar
  79. 79.
    Weiterer S, Uhle F, Lichtenstern C et al (2015) Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS ONE 10:e121748CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yan H, Xu T, Zhao H et al (2013) Isoflurane increases neuronal cell death vulnerability by downregulating miR-214. PLoS ONE 8:e55276CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yang S, Krug SM, Heitmann J et al (2016) Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 82:20–33CrossRefPubMedGoogle Scholar
  82. 82.
    Yoshizumi M, Eisenach JC, Hayashida K (2013) Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain 14:1485–1491CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao J, Lee MC, Momin A et al (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871CrossRefPubMedGoogle Scholar
  84. 84.
    Zhou J, Chaudhry H, Zhong Y et al (2015) Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine 71:89–100CrossRefPubMedGoogle Scholar
  85. 85.
    Zhou Q, Souba WW, Croce CM et al (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59:775–784CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • A.-K. Reinhold
    • 1
  • E. Jentho
    • 2
  • S. T. Schäfer
    • 3
  • M. Bauer
    • 2
  • H. L. Rittner
    • 1
  1. 1.Klinik und Poliklinik für AnästhesiologieUniversitätsklinikum WürzburgWürzburgDeutschland
  2. 2.Klinik für Anästhesiologie und IntensivmedizinUniversitätsklinikum JenaJenaDeutschland
  3. 3.Klinik für AnästhesiologieLudwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations