Skip to main content
Log in

Epigenetik

Wichtiges für Anästhesisten, Schmerz- und Intensivmediziner

Epigenetics

Important aspects for anesthesiologists, pain and intensive care physicians

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Epigenetik, die Wissenschaft, die sich mit der geänderten Ablesung des Genoms ohne Veränderung der Gene selbst beschäftigt, gelangt wissenschaftlich zunehmend in den Fokus. Unterschieden werden Veränderungen an der DNA von Modifikationen der Histone und nichtkodierenden RNA, die die messenger (m)RNA verändern. Epigenetische Modifikationen können durch Lebensumstände oder andere äußere Faktoren ausgelöst werden und somit das Auftreten von Erkrankungen beeinflussen. Die Epigenetik ist für Anästhesisten, Schmerzmediziner und Intensivmediziner von besonderem Interesse, weil anästhesiologische Medikamente einen längerfristigen Einfluss auf die Proteintranskription haben und so beispielsweise zur Chronifizierung von postoperativen Schmerzen sowie zu Veränderungen der Neurokognition nach Narkose oder der Immunreaktion bei Sepsis führen können. Die veränderte Expression nichtkodierender microRNA bei perioperativ relevanten Vorerkrankungen, wie z. B. dem Herzinfarkt, verändert ist, prädestiniert sie als potenzielle prognostische Marker für das perioperative Risiko. Ferner gibt es Möglichkeiten, epigenetische Veränderungen durch Lebensstil und bestimmte Medikamente zu beeinflussen. In diesem Übersichtsbeitrag werden exemplarisch einige anästhesie-, intensivmedizin- und schmerzmedizinrelevante Erkrankungen und der Einfluss der Epigenetik auf diese dargestellt.

Abstract

Epigenetics, i.e. an altered reading of the genome without altering the genes themselves is a growing scientific field. A distinction is made between changes in the DNA by modification of the histones and non-coding RNA that alter the messenger (m)RNAs. Epigenetic modifications can be triggered by personal circumstances or other external factors and therefore influence the occurrence of diseases. Epigenetics are therefore of particular interest to anesthesiologists, pain specialists and intensive care physicians, as anesthetic drugs may have a long-term influence on protein transcription leading for example to alterations in neurocognition after anesthesia, chronification of postoperative pain and immune response in sepsis. Non-coding microRNAs known to be altered in a variety of perioperatively relevant diseases e. g. heart infarct, might serve as prognostic factors of perioperative outcome. Moreover, there are ways to influence epigenetic changes through life style and certain medications. In this review article, examples of anesthesia, intensive care and pain medicine-relevant diseases and the influence of epigenetics on them are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Agrawal RP, Goswami J, Jain S et al (2009) Management of diabetic neuropathy by sodium valproate and glyceryl trinitrate spray: a prospective double-blind randomized placebo-controlled study. Diabetes Res Clin Pract 83:371–378

    Article  CAS  PubMed  Google Scholar 

  2. Akbarian S, Rios M, Liu RJ et al (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J Neurosci 22:4153–4162

    Article  CAS  PubMed  Google Scholar 

  3. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  4. Almutawaa W, Kang NH, Pan Y et al (2014) Induction of neurotrophic and differentiation factors in neural stem cells by valproic acid. Basic Clin Pharmacol Toxicol 115:216–221

    Article  CAS  PubMed  Google Scholar 

  5. Archer SL, Marsboom G, Kim GH et al (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 121:2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arts RJ, Novakovic B, Ter HR et al (2016) Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab 24:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bai G, Ambalavanar R, Wei D et al (2007) Downregulation of selective microRNAs in trigeminal ganglion neurons following inflammatory muscle pain. Mol Pain 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bekkering S, Quintin J, Joosten LA et al (2014) Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler Thromb Vasc Biol 34:1731–1738

    Article  CAS  PubMed  Google Scholar 

  9. Bekkering S, Blok BA, Joosten LA et al (2016) In vitro experimental model of trained innate immunity in human primary monocytes. Clin Vaccine Immunol 23:926–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Benz F, Roy S, Trautwein C et al (2016) Circulating microRNas as biomarkers for sepsis. Int J Mol Sci. https://doi.org/10.3390/ijms17010078

    PubMed  PubMed Central  Google Scholar 

  11. Bolkier Y, Nevo-Caspi Y, Salem Y et al (2016) Micro-RNA-208a, -208b, and -499 as biomarkers for myocardial damage after cardiac surgery in children. Pediatr Crit Care Med 17:e193–e197

    Article  PubMed  Google Scholar 

  12. Bomsztyk K, Mar D, An D et al (2015) Experimental acute lung injury induces multi-organ epigenetic modifications in key angiogenic genes implicated in sepsis-associated endothelial dysfunction. Crit Care 19:225

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buchheit T, Van de Ven T, Shaw A (2012) Epigenetics and the transition from acute to chronic pain. Pain Med 13:1474–1490

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cakmakkaya OS, Kolodzie K, Apfel CC et al (2014) Anaesthetic techniques for risk of malignant tumour recurrence. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008877.pub2

    PubMed  Google Scholar 

  15. Castellano S, Kuck D, Sala M et al (2008) Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1. J Med Chem 51:2321–2325

    Article  CAS  PubMed  Google Scholar 

  16. Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen J, Liu Z, Yang Y (2014) In vitro screening of LPS-induced miRNAs in leukocytes derived from cord blood and their possible roles in regulating TLR signals. Pediatr Res 75:595–602

    Article  CAS  PubMed  Google Scholar 

  18. Cheng SC, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chinn GA, Sasaki Russell JM, Sall JW (2016) Is a short anesthetic exposure in children safe? Time will tell: a focused commentary of the GAS and PANDA trials. Ann Transl Med 4:408

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coleman AE, McNeil N, Kovalchuck AL et al (2012) Cellular exposure to muscle relaxants and propofol could lead to genomic instability in vitro. J Biomed Res 26:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dalla Massara L, Osuru HP, Oklopcic A et al (2016) General anesthesia causes epigenetic histone modulation of c‑Fos and brain-derived neurotrophic factor, target genes important for neuronal development in the immature rat hippocampus. Anesthesiology 124:1311–1327

    Article  CAS  PubMed  Google Scholar 

  22. Davidson AJ, Disma N, de Graaff JC et al (2016) Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387:239–250

    Article  PubMed  Google Scholar 

  23. Diorio J, Meaney MJ (2007) Maternal programming of defensive responses through sustained effects on gene expression. J Psychiatry Neurosci 32:275–284

    PubMed  PubMed Central  Google Scholar 

  24. Doxaki C, Kampranis SC, Eliopoulos AG et al (2015) Coordinated regulation of miR-155 and miR-146a genes during induction of endotoxin tolerance in macrophages. J Immunol 195:5750–5761

    Article  CAS  PubMed  Google Scholar 

  25. Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  26. Essandoh K, Fan GC (2014) Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta 1842:2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Evers S, Pothmann R, Uberall M et al (2002) Treatment of idiopathic headache in childhood – recommendations of the German Migraine and Headache Society (DMKG). Schmerz 16:48–56

    Article  CAS  PubMed  Google Scholar 

  28. Fletcher D, Stamer UM, Pogatzki-Zahn E et al (2015) Chronic postsurgical pain in Europe: an observational study. Eur J Anaesthesiol 32:725–734

    Article  PubMed  Google Scholar 

  29. Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447:972–978

    Article  CAS  PubMed  Google Scholar 

  30. Gao M, Wang X, Zhang X et al (2015) Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol 195:672–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Genda Y, Arai M, Ishikawa M et al (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan(R) Low Density Array study. Int J Mol Med 31:129–137

    Article  CAS  PubMed  Google Scholar 

  32. Goto G, Hori Y, Ishikawa M et al (2014) Changes in the gene expression levels of microRNAs in the rat hippocampus by sevoflurane and propofol anesthesia. Mol Med Rep 9:1715–1722

    Article  CAS  PubMed  Google Scholar 

  33. Hammer P, Banck MS, Amberg R et al (2010) mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain. Genome Res 20:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  35. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu D, Flick RP, Zaccariello MJ et al (2017) Association between exposure of young children to procedures requiring general anesthesia and learning and behavioral outcomes in a population-based birth cohort. Anesthesiology 127:227–240

    Article  PubMed  Google Scholar 

  37. Jentho E, Bodden M, Schulz C et al (2017) microRNA-125a-3p is regulated by MyD88 in Legionella pneumophila infection and targets NTAN1. PLoS ONE 12:e176204

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jiang XL, Du BX, Chen J et al (2014) MicroRNA-34a negatively regulates anesthesia-induced hippocampal apoptosis and memory impairment through FGFR1. Int J Clin Exp Pathol 7:6760–6767

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kleinnijenhuis J, Quintin J, Preijers F et al (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kleinnijenhuis J, Quintin J, Preijers F et al (2014) Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J Innate Immun 6:152–158

    Article  CAS  PubMed  Google Scholar 

  42. Kreth S, Hubner M, Hinske LC (2018) MicroRNas as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg 126(2):670. https://doi.org/10.1213/ANE.0000000000002444

    Article  CAS  PubMed  Google Scholar 

  43. Kuehl LK, Michaux GP, Richter S et al (2010) Increased basal mechanical pain sensitivity but decreased perceptual wind-up in a human model of relative hypocortisolism. Pain 149:539–546

    Article  CAS  PubMed  Google Scholar 

  44. Kusuda R, Cadetti F, Ravanelli MI et al (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang DY, Li X, Clark JD (2013) Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain 14:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin D, Liu J, Cottrell JE et al (2017) Early-life sevoflurane targets brain region specific microRNAs throughout development. American Society of Anesthesiologists Annual Meeting Boston 2017.

    Google Scholar 

  47. Lindholm ME, Marabita F, Gomez-Cabrero D et al (2014) An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 9:1557–1569

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lirk P, Berger R, Hollmann MW et al (2012) Lidocaine time- and dose-dependently demethylates deoxyribonucleic acid in breast cancer cell lines in vitro. Br J Anaesth 109:200–207

    Article  CAS  PubMed  Google Scholar 

  49. Lirk P, Hollmann MW, Fleischer M et al (2014) Lidocaine and ropivacaine, but not bupivacaine, demethylate deoxyribonucleic acid in breast cancer cells in vitro. Br J Anaesth 113(Suppl 1):i32–i38

    Article  CAS  PubMed  Google Scholar 

  50. Lirk P, Fiegl H, Weber NC et al (2015) Epigenetics in the perioperative period. Br J Pharmacol 172:2748–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu F, Nie C, Zhao N et al (2017) MiR-155 alleviates septic lung injury by inducing autophagy via inhibition of transforming growth factor-beta-activated binding protein 2. Shock 48:61–68

    Article  CAS  PubMed  Google Scholar 

  52. Lyn-Kew K, Rich E, Zeng X et al (2010) IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis. PLoS ONE 5:e11145

    Article  PubMed  PubMed Central  Google Scholar 

  53. Manners MT, Ertel A, Tian Y et al (2016) Genome-wide redistribution of MeCP2 in dorsal root ganglia after peripheral nerve injury. Epigenetics Chromatin 9:23

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsushita Y, Araki K, Omotuyi O et al (2013) HDAC inhibitors restore C‑fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol 170:991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Migräne- D, e. V. uK (2016) Stellungnahme und Argumentationshilfe zum „OFF-LABEL-USE“ in der Kopfschmerztherapie Bd. 2017

    Google Scholar 

  56. Mohammad F, Mondal T, Kanduri C (2009) Epigenetics of imprinted long noncoding RNAs. Epigenetics 4:277–286

    Article  CAS  Google Scholar 

  57. Nahid MA, Pauley KM, Satoh M et al (2009) miR-146a is critical for endotoxin-induced tolerance: IMPLICATION IN INNATE IMMUNITY. J Biol Chem 284:34590–34599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Netea MG, Joosten LA, van der Meer JW et al (2015) Immune defence against Candida fungal infections. Nat Rev Immunol 15:630–642

    Article  CAS  PubMed  Google Scholar 

  59. Netea MG, Joosten LA, Latz E et al (2016) Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098

    Article  PubMed  PubMed Central  Google Scholar 

  60. Niederberger E (2014) Epigenetics and pain. Anaesthesist 63:63–69

    Article  CAS  PubMed  Google Scholar 

  61. Novakovic B, Habibi E, Wang SY et al (2016) beta-glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell 167:1354–1368.e14

    Article  CAS  PubMed  Google Scholar 

  62. O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175

    Article  PubMed  Google Scholar 

  63. Paananen M, O’Sullivan P, Straker L et al (2015) A low cortisol response to stress is associated with musculoskeletal pain combined with increased pain sensitivity in young adults: a longitudinal cohort study. Arthritis Res Ther 17:355

    Article  PubMed  PubMed Central  Google Scholar 

  64. Painter RC, de Rooij SR, Bossuyt PM et al (2006) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84:322–327 (quiz 466-327)

    CAS  PubMed  Google Scholar 

  65. Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721–727

    Article  CAS  PubMed  Google Scholar 

  66. Phiel CJ, Zhang F, Huang EY et al (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  67. van der Poll T, van de Veerdonk FL, Scicluna BP et al (2017) The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol 17:407–420

    Article  PubMed  Google Scholar 

  68. Quintin J, Saeed S, Martens JHA et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–232

    Article  CAS  PubMed  Google Scholar 

  69. Robertson KD, Uzvolgyi E, Liang G et al (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27:2291–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rump K, Caroline H, Unterberg M et al (2017) Propofol führt zu epigenetischen Veränderungen an Immunzellen, S 1–4 https://doi.org/10.1111/j.1399

    Google Scholar 

  71. Saeed S, Quintin J, Kerstens HH et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086

    Article  PubMed  PubMed Central  Google Scholar 

  72. Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Thangavel J, Malik AB, Elias HK et al (2014) Combinatorial therapy with acetylation and methylation modifiers attenuates lung vascular hyperpermeability in endotoxemia-induced mouse inflammatory lung injury. Am J Pathol 184:2237–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tran L, Schulkin J, Ligon CO et al (2015) Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 20:1219–1231

    Article  CAS  PubMed  Google Scholar 

  75. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74:ftw18

    Article  PubMed  Google Scholar 

  76. Twaroski DM, Yan Y, Olson JM et al (2014) Down-regulation of microRNA-21 is involved in the propofol-induced neurotoxicity observed in human stem cell-derived neurons. Anesthesiology 121:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Waddington CH (1942) Canalisation of development and the inheritance of acquired characters. Nature 150:563–564

    Article  Google Scholar 

  78. Wang JF, Yu ML, Yu G et al (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 394:184–188

    Article  CAS  PubMed  Google Scholar 

  79. Weiterer S, Uhle F, Lichtenstern C et al (2015) Sepsis induces specific changes in histone modification patterns in human monocytes. PLoS ONE 10:e121748

    Article  PubMed  PubMed Central  Google Scholar 

  80. Yan H, Xu T, Zhao H et al (2013) Isoflurane increases neuronal cell death vulnerability by downregulating miR-214. PLoS ONE 8:e55276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang S, Krug SM, Heitmann J et al (2016) Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 82:20–33

    Article  CAS  PubMed  Google Scholar 

  82. Yoshizumi M, Eisenach JC, Hayashida K (2013) Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury. J Pain 14:1485–1491

    Article  CAS  PubMed  Google Scholar 

  83. Zhao J, Lee MC, Momin A et al (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871

    Article  CAS  PubMed  Google Scholar 

  84. Zhou J, Chaudhry H, Zhong Y et al (2015) Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine 71:89–100

    Article  CAS  PubMed  Google Scholar 

  85. Zhou Q, Souba WW, Croce CM et al (2010) MicroRNA-29a regulates intestinal membrane permeability in patients with irritable bowel syndrome. Gut 59:775–784

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Rittner.

Ethics declarations

Interessenkonflikt

A.-K. Reinhold, E. Jentho, S.T. Schäfer, M. Bauer und H.L. Rittner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinhold, AK., Jentho, E., Schäfer, S.T. et al. Epigenetik. Anaesthesist 67, 246–254 (2018). https://doi.org/10.1007/s00101-018-0424-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-018-0424-7

Schlüsselwörter

Keywords

Navigation