Skip to main content
Log in

Bupivacaine crystal deposits after long-term epidural infusion

Bupivacainkristalle nach epiduraler Langzeitinfusion

  • Originalien
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Abstract

The case of a 45-year-old male patient (body weight 52 kg, height 1.61 m) with a locally invasive gastric carcinoma infiltrating into the retroperitoneal space is reported. Because of severe cancer pain a tunnelled thoracic epidural catheter (EC) was placed at thoracic spinal level 7/8 and a local anesthetic (LA) mixture of bupivacaine 0.25 % and morphine 0.005 % was infused continuously at 6 ml h−1. To optimize pain therapy the concentration was doubled (bupivacaine 0.5 %, morphine 0.01 %) 3 months later but the infusion rate was reduced to 3 ml h−1 thus the total daily dose did not change. The patient died 6 months after initiation of the epidural analgesia from the underlying disease. The total amount of bupivacaine infused was 69 g and of morphine 1.37 g. The patient never reported any neurological complications. The autopsy revealed large white crystalline deposits in the thoracic epidural space which were identified as bupivacaine base by infrared spectrometry. Morphine could not be detected. A histological examination showed unreactive fatty tissue necrosis within the crystalline deposits but nerve tissue could not be identified. It is concluded that the bupivacaine crystalline deposits arose due to precipitation but the clinical significance with regard to sensory level and neuraxial tissue toxicity is unknown.

Zusammenfassung

Berichtet wird über einen 45-jährigen Patienten (Körpergewicht 52 kg, Körpergröße 1,61 m) mit lokal invasivem, das Retroperitoneum infiltrierendem Magenkarzinom. Wegen starker Tumorschmerzen wurde ein getunnelter Epiduralkatheter auf der Höhe Th7/8 zur kontinuierlichen Infusion (6 ml/h) einer lokalanästhetisch wirkenden Kombination aus 0,25%igem Bupivacain und 0,005%igem Morphin gelegt. Zur Therapieoptimierung wurden 3 Monate später die Konzentration verdoppelt (0,5%iges Bupivacain und 0,01%iges Morphin) und die Infusionsrate halbiert (3 ml/h), sodass sich die tägliche Dosis nicht veränderte. Sechs Monate nach Beginn der Epiduralanalgesie verstarb der Patient an seiner Grunderkrankung. Insgesamt waren 69 g Bupivacain und 1,37 g Morphin infundiert worden. Zu keiner Zeit hatte der Patient neurologische Komplikationen angegeben. In der Autopsie fanden sich großflächige weiße kristalline Ablagerungen im thorakalen Epiduralraum, infrarotspektrometrisch erwiesen sich diese als aus Bupivacain bestehend. Morphin konnte nicht nachgewiesen werden. Die histologische Untersuchung zeigte eine nichtreaktive Fettgewebsnekrose innerhalb der Bupivacainkristalle; Nervengewebe ließ sich nicht identifizieren. Es wird davon ausgegangen, dass die Bupivacainkristalle durch Präzipitation entstanden sind. Nicht bekannt ist ihre klinische Bedeutung auf sensorischer Ebene und hinsichtlich einer neuroaxialen Gewebetoxizität.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Balga I, Gerber H, Konrad C, Diebold J (2009) Entwicklung eines Weichteilulkus nach periduraler Langzeitinfusion. Anaesthesist 58:156–162

    Article  PubMed  CAS  Google Scholar 

  2. Basson MD, Carlson BM (1980) Myotoxicity of single and repeated injections of mepivacaine (Carbocaine) in the rat. Anesth Analg 59:275–282

    Article  PubMed  CAS  Google Scholar 

  3. Benoit PW, Belt WD (1970) Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat 107:547–556

    PubMed  CAS  Google Scholar 

  4. Benoit PW (1978) Reversible skeletal muscle damage after administration of local anesthetics with and without epinephrine. J Oral Surg 36:198–201

    PubMed  CAS  Google Scholar 

  5. Bianchi F, Ginggen A, Tardy Y (2008) Stability and compatibility of drug mixtures in an implantable infusion system. Anaesthesia 63:972–978

    Article  PubMed  CAS  Google Scholar 

  6. Carlson BM, Emerick S, Komorowski TE et al (1992) Extraocular muscle regeneration in primates. Local anesthetic-induced lesions. Ophthalmology 99:582–589

    PubMed  CAS  Google Scholar 

  7. Carlson BM, Rainin EA (1985) Rat extraocular muscle regeneration. Repair of local anesthetic-induced damage. Arch Ophthalmol 103:1373–1377

    Article  PubMed  CAS  Google Scholar 

  8. Carlson BM, Shepard B, Komorowski TE (1990) A histological study of local anesthetic-induced muscle degeneration and regeneration in the monkey. J Orthop Res 8:485–494

    Article  PubMed  CAS  Google Scholar 

  9. Classen AM, Wimbish GH, Kupiec TC (2004) Stability of admixture containing morphine sulphate, bupivacaine hydrochloride, and clonidine hydrochloride in an implantable infusion system. J Pain Symptom Manage 28:603–611

    Article  PubMed  CAS  Google Scholar 

  10. Coyle N, Adelhardt J, Foley KM, Portenoy RK (1990) Character of terminal illness in the advanced cancer patient: pain and other symptoms during the last 4 weeks of life. J Pain Symptom Manage 2:83–93

    Article  Google Scholar 

  11. Foster AH, Carlson BM (1980) Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth Analg 59:727–736

    Article  PubMed  CAS  Google Scholar 

  12. Gerheuser F, Roth A (2007) Periduralanästhesie. Anaesthesist 56:499–526

    Article  PubMed  CAS  Google Scholar 

  13. Hall-Craggs EC (1980) Early ultrastructural changes in skeletal muscle exposed to the local anaesthetic bupivacaine (Marcaine). Br J Exp Pathol 61:139–149

    PubMed  CAS  Google Scholar 

  14. Hildebrand KR, Elsberry DD, Deer TR (2001) Stability, compatibility, and safety of intrathecal bupivacaine administered chronically via an implantable delivery system. Clin J Pain 17:239–244

    Article  PubMed  CAS  Google Scholar 

  15. Hogan Q, Dotson R, Erickson S et al (1994) Local anesthetic myotoxicity: a case and review. Anesthesiology 80:942–947, Rev 71:849–908

    Google Scholar 

  16. Johnson CE (1997) Compatibility of bupivacaine hydrochloride and morphine sulfate. Am J Health Syst Pharm 54:61–64

    PubMed  CAS  Google Scholar 

  17. Komorowski TE, Shepard B, Okland S, Carlson BM (1990) An electron microscopic study of local anesthetic-induced skeletal muscle fiber degeneration and regeneration in the monkey. J Orthop Res 8:495–503

    Article  PubMed  CAS  Google Scholar 

  18. Kyttä J, Heinonen E, Rosenberg PH et al (1986) Effects of repeated bupivacaine administration on sciatic nerve and surrounding muscle tissue in rats. Acta Anaesthesiol Scand 30:625–629

    Article  PubMed  Google Scholar 

  19. Nagaro T, Arai T (1993) Comments on injectate encapsulation after long-term epidural administration. Pain 55:125–126

    Article  PubMed  CAS  Google Scholar 

  20. Nonaka I, Takagi A, Ishiura S et al (1983) Pathophysiology of muscle fiber necrosis induced by bupivacaine hydrochloride (Marcaine). Acta Neuropathol 60:167–174

    Article  PubMed  CAS  Google Scholar 

  21. Peterfreund RA, Datta S, Ostheimer GW (1989) pH adjustment of local anesthetic solutions with sodium bicarbonate: laboratory evaluation of alkalinisation and precipitation. Reg Anesth 14:265–270

    PubMed  CAS  Google Scholar 

  22. Parris WC, Dettbarn WD (1988) Muscle atrophy following nerve block therapy. Anesthesiology 69:289

    Article  PubMed  CAS  Google Scholar 

  23. Rao VA, Kawatra VK (1988) Ocular myotoxic effects of local anesthetics. Can J Ophthalmol 23:171–173

    PubMed  CAS  Google Scholar 

  24. Schipper I, Lüthi M (1994) A case of diplopia after retrobulbar anesthesia for cataract operation. Klin Monatsbl Augenheilkd 204:176–180

    Article  PubMed  CAS  Google Scholar 

  25. Schultz E, Lipton BH (1978) The effect of marcaine on muscle and non-muscle cells in vitro. Anat Rec 191:351–369

    Article  PubMed  CAS  Google Scholar 

  26. Selander D, Edshage S, Wolff T (1979) Paresthesiae or no paresthesiae? Nerve lesions after axillary blocks. Acta Anaesthesiol Scand 23:27–33

    Article  PubMed  CAS  Google Scholar 

  27. Smith TJ, Coyne PJ, Staats PS et al (2005) An implantable drug delivery system (IDDS) for refractory cancer pain provides sustained pain control, less drug-related toxicity, and possibly better survival compared with comprehensive medical management (CMM). Ann Oncol 16:825–833

    Article  PubMed  CAS  Google Scholar 

  28. Taylor G, Devys JM, Heran F, Plaud B (2004) Early exploration of diplopia with magnetic resonance imaging after peribulbar anaesthesia. Br J Anaesth 92:899–901

    Article  PubMed  CAS  Google Scholar 

  29. Wakata N, Sugimoto H, Iguchi H (2001) Bupivacaine hydrochloride induces muscle fiber necrosis and hydroxyl radical formation—dimethyl sulphoxide reduces hydroxyl radical formation. Neurochem Res 26:841–844

    Article  PubMed  CAS  Google Scholar 

  30. Wulf H, Gleim M, Mignat C (1994) The stability of mixtures of morphine hydrochloride, bupivacaine hydrochloride, and clonidine hydrochloride in portable pump reservoirs for the management of chronic pain syndromes. J Pain Symptom Manage 9:308–311

    Article  PubMed  CAS  Google Scholar 

  31. Yagiela JA, Benoit PW, Buoncristiani RD et al (1981) Comparison of myotoxic effects of lidocaine with epinephrine in rats and humans. Anesth Analg 60:471–480

    Article  PubMed  CAS  Google Scholar 

  32. Zink W, Bohl JRE, Hacke N et al (2005) The long-term myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blocks. Anesth Analg 101:548–554

    Article  PubMed  CAS  Google Scholar 

  33. Zink W, Graf BM (2003) Toxikologie der Lokalanästhetika. Anaesthesist 52:1102–1123

    Article  PubMed  CAS  Google Scholar 

  34. Zink W, Graf BM (2004) Local anesthetic myotoxicity. Reg Anesth Pain Med 29:333–340

    PubMed  CAS  Google Scholar 

  35. Zink W, Graf BM, Sinner B et al (2002) Differential effects of bupivacaine on intracellular Ca2 + regulation: potential mechanisms of its myotoxicity. Anesthesiology 97:710–716

    Article  PubMed  CAS  Google Scholar 

  36. Zink W, Missler G, Sinner B et al (2005) Differential effects of bupivacaine and ropivacaine enantiomers on intracellular Ca2 + regulation in murine skeletal muscle fibers. Anesthesiology 102:793–798

    Article  PubMed  CAS  Google Scholar 

  37. Zink W, Seif C, Bohl JR et al (2002) The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg 97:1173–1179

    Google Scholar 

  38. Zink W, Sinner B, Zausig Y, Graf BM (2007) Myotoxizität von Lokalanästhetika. Anaesthesist 56:118–127

    Article  PubMed  CAS  Google Scholar 

  39. Arzneimittel-Kompendium der Schweiz (2012) Bupivacain HCL (Sintetica, Mendrisio, Switzerland). Morphin HCL (Streuli Pharma AG, Uznach, Switzerland). Documed AG, Basel (http://www.documed.ch)

Download references

Acknowledgment

The authors thank Mr. Maurice Hogan, M.D., and Mr. Menish Soni, M.D., for excellent support.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Balga M.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balga, I., Gerber, H., Schorno, X. et al. Bupivacaine crystal deposits after long-term epidural infusion. Anaesthesist 62, 543–548 (2013). https://doi.org/10.1007/s00101-013-2179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-013-2179-5

Keywords

Schlüsselwörter

Navigation