Strahlentherapie und Onkologie

, Volume 195, Issue 7, pp 648–658 | Cite as

Influence of XRCC4 expression by breast cancer cells on ipsilateral recurrence after breast-conserving therapy

  • Mio Kitagawa
  • Masanori Someya
  • Tomokazu Hasegawa
  • Toshihiko Mikami
  • Kazuaki Asaishi
  • Tadashi Hasegawa
  • Yoshihisa Matsumoto
  • Goro Kutomi
  • Ichiro Takemasa
  • Koh-ichi SakataEmail author
Original Article



We examined the expression of nonhomologous end-joining (NHEJ) proteins by breast cancer cells in patients with or without ipsilateral breast tumor recurrence (IBTR) after breast-conserving therapy. We also investigated whether there was a difference of NHEJ-related protein expression by tumor cells between two types of IBTR, i.e., true recurrence (TR) with regrowth from the tumor bed or development of a new primary tumor (NP).

Patients and methods

The original cohort comprised 560 breast cancer patients who received breast-conserving therapy between February 1995 and March 2006, including 520 patients without IBTR and 40 patients with IBTR. Propensity score matching was employed to select 40 trios (120 patients) consisting of 1 patient with IBTR and 2 patients without IBTR. Immunohistochemical examination of proteins related to NHEJ was performed in surgical specimens.


The 40 patients with IBTR included 22 patients who developed TR and 18 who had NP. The 15-year overall survival rate was 85.9% for patients with NP and 95.5% for those with TR, while it was 96.5% for patients without IBTR. Patients with high XRCC4 expression in tumor cells had significantly higher IBTR rates than those with low XRCC4 expression (P < 0.001). The frequency of TR was significantly higher in patients with high expression of XRCC4 than in those with low XRCC4 expression (p < 0.001). XRCC4 expression by tumor cells was not significantly related to development of NP.


IBTR due to TR may be related to low radiosensitivity of tumor cells, possibly related to high XRCC4 expression.


Radiotherapy Nonhomologous end-joining (NHEJ) proteins DNA repair New primary tumor True recurrence 

Einfluss der XRCC4-Expression von Brustkrebszellen auf ipsilaterale Rezidive nach brusterhaltender Therapie



Wir untersuchten die Tumorexpression von nichthomologen endverknüpften Proteinen (NHEJ) in Patienten mit oder ohne ipsilateralen Brustkrebszrezidiven (IBTR) nach brusterhaltenden Therapieverfahren. Weiterhin untersuchten wir, ob die Expression NHEJ-verwandter Proteine bei den beiden IBTR-Typen, d. h. echte Rezidive mit Nachwachsen vom Tumorbett oder Entwicklung neuer Primärtumore, unterschiedlich ist.

Patienten und Methoden

Die ursprüngliche Gruppe umfasste 560 zwischen Februar 1995 und März 2006 mit brusterhaltenden Therapieverfahren behandelte Brustkrebspatienten, einschließlich 520 Patienten ohne IBTR und 40 Patienten mit IBTR. „Propensity score matching“ wurde eingesetzt, um 40 Trios (120 Patienten) aus 1 Patient mit IBTR und 2 Patienten ohne IBTR auszuwählen. Immunhistochemische Untersuchungen der NHEJ-verwandten Proteine wurden an Biopsieproben durchgeführt.


Die 40 Patienten mit IBTR umfassten 22 Patienten mit echten Rezidiven und 18, die einen neuen Primärtumor entwickelten. Die 15-Jahres-Gesamtüberlebensrate betrug 85,9 % für Patienten mit einem neuen Primärtumor und 95,5 % für Patienten mit echten Rezidiven, während sie für Patienten ohne IBTR 96,5 % war. Patienten mit einer starken XRCC4-Expression durch die Tumorzellen hatten eine signifikant höhere IBTR-Rate als diejenigen mit geringer XRCC4-Expression (p < 0,001). Die Häufigkeit echter Rezidive war bei Patienten mit erhöhter XRCC4-Expression höher als bei Patienten mit geringer XRCC4-Expression (21/64 Patienten versus 1/56 Patienten). Demgegenüber hatte die XRCC4-Expression keine wesentliche Beziehung zur Entwicklung eines neuen Primärtumors.


Durch echte Rezidive hervorgerufene IBTR könnte mit der geringen Strahlenempfindlichkeit der Tumorzellen und möglicherweise der hohen XRCC4-Expression in Verbindung stehen.


Strahlentherapie Nichthomologen endverknüpfte Proteine DNA-Reparatur Neuer primärer Tumor Echtes Rezidiv 



This work was supported by a grants-in-aid of Ono Cancer Research Fund and JSPS KAKENHI grant number 15K10000.

Conflict of interest

M. Kitagawa, M. Someya, T. Hasegawa, T. Mikami, K. Asaishi, T. Hasegawa, Y. Matsumoto, G. Kutomi, I. Takemasa, and K.-i. Sakata declare that they have no competing interests.

Supplementary material

66_2019_1468_MOESM1_ESM.tiff (56 kb)
Supplementary Fig. 1 XRCC4 expression according to ER
66_2019_1468_MOESM2_ESM.docx (60 kb)
Supplementary Table 1


  1. 1.
    Darby S, McGale P, Correa C et al (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomized trials. Lancet 378(9804):1707–1716CrossRefPubMedGoogle Scholar
  2. 2.
    Wapnir IL, Anderson SJ, Mamounas EP et al (2009) Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in five National Surgical Adjuvant Breast and Bowel Project node-positive adjuvant breast cancer trials. J Clin Oncol 24(13):2028–2037CrossRefGoogle Scholar
  3. 3.
    Oouchi A, Sakata K, Masuoka H et al (2009) The treatment outcome of patients undergoing breast-conserving therapy: the clinical role of postoperative radiotherapy. Breast Cancer 16(1):49–57CrossRefPubMedGoogle Scholar
  4. 4.
    Yoshida T, Takei H, Kurosumi M et al (2010) True recurrences and new primary tumors have different clinical features in invasive breast cancer patients with ipsilateral breast tumor relapse after breast-conserving treatment. Breast J 16(2):127–133CrossRefPubMedGoogle Scholar
  5. 5.
    Ishitobi M, Ohsumi S, Inaji H et al (2012) Ipsilateral breast tumor recurrence (IBTR) in patients with operable breast cancer who undergo breast-conserving treatment after receiving neoadjuvant chemotherapy: risk factors of IBTR and validation of the MD Anderson Prognostic Index. Cancer 118(18):4385–4393CrossRefPubMedGoogle Scholar
  6. 6.
    Veronesi U, Marubini E, Del Vecchio M et al (1995) Local recurrences and distant metastases after conservative breast cancer treatments: partly independent events. J Natl Cancer Inst 87(1):19–27CrossRefPubMedGoogle Scholar
  7. 7.
    Panet-Raymond V, Truong PT, McDonald RE et al (2011) True recurrence versus new primary: an analysis of ipsilateral breast tumor recurrences after breast-conserving therapy. Int J Radiat Oncol Biol Phys 81(2):409–417CrossRefPubMedGoogle Scholar
  8. 8.
    Hall EJ (2006) DNA strand breaks and chromosomal aberrations. In: Hall EJ, Giaccia AM (eds) Radiobiology for the Radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 16–29Google Scholar
  9. 9.
    Polo SE, Jackson SP (2011) Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modification. Genes Dev 25:409–433CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li Z, Otevrel T, Gao Y et al (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. Cell 83(7):1079–1089CrossRefPubMedGoogle Scholar
  11. 11.
    Bryans M, Valenzano MC, Stamato TD (1999) Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res 433(1):53–58CrossRefPubMedGoogle Scholar
  12. 12.
    Berg E, Christensen MO, Dalla RI et al (2011) XRCC4 controls nuclear import and distribution of Ligase IV and exchanges faster at damaged DNA in complex with Ligase IV. Dna Repair (Amst) 10(12):1232–1242CrossRefGoogle Scholar
  13. 13.
    Iles N, Rulten S, El-Khamisy SF, Caldecott KW (2007) APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol Cell Biol 27(10):3793–3803CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jeggo PA (1998) Identification of genes involved in repair of DNA double strand-breaks in mammalian cells. Radiat Res 150:S80–S91CrossRefPubMedGoogle Scholar
  15. 15.
    Söderlund Leifler K, Queseth S, Fornander T et al (2010) Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol 37(6):1547–1554PubMedGoogle Scholar
  16. 16.
    Sakata K, Matsumoto Y, Tauchi H et al (2001) Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys 49(1):161–167CrossRefPubMedGoogle Scholar
  17. 17.
    Kamdar RP, Matsumoto Y (2010) Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation. J Radiat Res 51:303–313CrossRefPubMedGoogle Scholar
  18. 18.
    Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458CrossRefPubMedGoogle Scholar
  19. 19.
    Jobsen J, van der Palen J, Riemersma S et al (2014) Pattern of ipsilateral breast tumor recurrence after breast-conserving therapy. Int J Radiat Oncol Biol Phys 89(5):1006–1014CrossRefPubMedGoogle Scholar
  20. 20.
    Sjöström M, Lundstedt D, Hartman L et al (2017) Response to radiotherapy after breast-conserving surgery in different breast cancer subtypes in the Swedish breast cancer group 91 radiotherapy randomized clinical trial. J Clin Oncol 35(28):3222–3229CrossRefPubMedGoogle Scholar
  21. 21.
    della Rovere GQ, Benson JR (2002) Ipsilateral local recurrence of breast cancer: determinant or indicator of poor prognosis? Lancet Oncol 3(3):183–187CrossRefPubMedGoogle Scholar
  22. 22.
    Gieni M, Avram R, Dickson L et al (2012) Local breast cancer recurrence after mastectomy and immediate breast reconstruction for invasive cancer: a meta-analysis. Breast 21(3):230–236CrossRefPubMedGoogle Scholar
  23. 23.
    Schnitt SJ (2003) Risk factors for local recurrence in patients with invasive breast cancer and negative surgical margins of excision. Where are we and where are we going? Am J Clin Pathol 120(4):485–488CrossRefPubMedGoogle Scholar
  24. 24.
    van der Leij F, Elkhuizen PH, Bartelink H et al (2012) Predictive factors for local recurrence in breast cancer. Semin Radiat Oncol 22(2):100–107CrossRefPubMedGoogle Scholar
  25. 25.
    Hayashi J, Sakata KI, Someya M et al (2012) Analysis and results of Ku and XRCC4 expression in hypopharyngeal cancer tissues treated with chemoradiotherapy. Oncol Lett 4(1):151–155CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hori M, Someya M, Sakata KI et al (2017) Influence of XRCC4 expression in esophageal cancer cells on the response to radiotherapy. Med Mol Morphol 50(1):25–33CrossRefPubMedGoogle Scholar
  27. 27.
    Takada Y, Someya M, Sakata KI et al (2016) Influence of Ku86 and XRCC4 expression in uterine cervical cancer on the response to preoperative radiotherapy. Med Mol Morphol 49(4):210–216CrossRefPubMedGoogle Scholar
  28. 28.
    Hada M, Kwok RP (2014) Regulation of ku70-bax complex in cells. J Cell Death 7:11–13CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sui H, Zhou M, Imamichi H et al (2017) STING is an essential mediator of the Ku70-mediated production of IFN-λ1 in response to exogenous DNA. Sci Signal. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mio Kitagawa
    • 1
  • Masanori Someya
    • 1
  • Tomokazu Hasegawa
    • 1
  • Toshihiko Mikami
    • 2
  • Kazuaki Asaishi
    • 2
  • Tadashi Hasegawa
    • 3
  • Yoshihisa Matsumoto
    • 4
  • Goro Kutomi
    • 5
  • Ichiro Takemasa
    • 5
  • Koh-ichi Sakata
    • 1
    Email author
  1. 1.Department of RadiologySapporo Medical University School of MedicineChuo-ku, SapporoJapan
  2. 2.Sapporo-Kotoni Breast ClinicNishi-ku, SapporoJapan
  3. 3.Department of Surgical PathologySapporo Medical University School of MedicineChuo-ku, SapporoJapan
  4. 4.Institute of Innovative Research Laboratory for Advanced Nuclear EnergyTokyo Institute of TechnologyTokyoJapan
  5. 5.Department of Surgery, Surgical Oncology and ScienceSapporo Medical University School of MedicineChuo-ku, SapporoJapan

Personalised recommendations