Advertisement

Strahlentherapie und Onkologie

, Volume 195, Issue 7, pp 668–676 | Cite as

Tomotherapy in malignant mesothelioma: a planning study to establish dose constraints

  • Christina LeitzenEmail author
  • Timo Wilhelm-Buchstab
  • Sabina Stumpf
  • Martina Heimann
  • David Koch
  • Christopher Schmeel
  • Birgit Simon
  • Susanne Vornholt
  • Stephan Garbe
  • Fred Röhner
  • Felix Schoroth
  • Hans Heinz Schild
  • Heinrich Schüller
  • Thomas Müdder
Original Article
  • 134 Downloads

Abstract

Purpose

A planning study was performed for helical tomotherapy treatment. We evaluated the maximum achievable protection of organs at risk (OARs) in patients with malignant pleural mesothelioma after pleurectomy with simultaneous optimal target coverage.

Materials and methods

The datasets of 13 patients were included. The applied dose to the planning target volume (PTV) was 50.4 Gy with single doses of 1.8 Gy per fraction. Presuming optimal target coverage, we evaluated the applied dose to the OARs with special regard to the contralateral lung.

Results

For left-(lsRT)/right(rsRT)-sided radiotherapy, target coverage for the PTV showed a D98 (mean) of 49.37/49.71 Gy (98.0%/98.6%) and a D2 (mean) of 54.19/54.61 Gy (107.5%/108.3%). The beam-on time was kept below 15 min. The achieved mean dose (D50) to the contralateral lung was kept below 4 Gy for lsRT and rsRT. With regard to the other organs at risk the applied doses were as follows: mean dose (lsRT): ipsilateral kidney (Dmean) 13.03 (5.32–22.18) Gy, contralateral kidney (Dmean) <2.0 Gy, heart (Dmean) 22.23 (13.57–27.72) Gy, spinal cord D1 <Gy; mean dose (rsRT): ipsilateral kidney (Dmean) 10.22 (6.30–18.04) Gy, contralateral kidney (Dmean) <2.1 Gy, heart (Dmean) 8.02 (6.0–10.38) Gy, spinal cord D1 <35.5 Gy.

Conclusion

With helical tomotherapy, postoperative treatment for malignant pleural mesothelioma after pleurectomy achieves good target coverage combined with simultaneous dose sparing to the (especially contralateral) OARs.

Keywords

Dose constraints Sparing organs at risk Pleural mesothelioma Postoperative treatment IMRT 

Tomotherapie bei malignem Pleuramesotheliom: eine Planungsstudie zur Etablierung von Dosisbeschränkungen

Zusammenfassung

Zielsetzung

Planungsstudie zur Behandlung von Pleuramesotheliomen mittels helikaler Tomotherapie. Analysiert wurde die maximal mögliche Schonung der Risikoorgane (OARs) für Bestrahlungen bei Patienten mit einem malignen Pleuramesotheliom nach Pleurektomie bei gleichzeitig guter Zielvolumenabdeckung.

Material und Methoden

Die Datensätze von 13 Patienten wurden analysiert. Die für das Planungszielvolumen (PTV) verschriebene Dosis lag bei 50,4 Gy mit Einzeldosen von 1,8 Gy. Unter der Voraussetzung einer guten Zielvolumenabdeckung wurde die im Bereich der OARs erreichte Dosis insbesondere im Bereich der kontralateralen Lunge evaluiert.

Ergebnisse

Für links-/rechtsseitige Bestrahlungen lag die Zielvolumenabdeckung im PTV für die D98 im Mittel bei 49,37/49,71 Gy (98,0 %/98,6 %) und für die D2 bei 54,19/54,61 Gy (107,5 %/108,3 %). Die Bestrahlungszeit lag unter 15 min. Die im Bereich der kontralateralen Lunge erreichte mediane Dosis (D50) lag im Mittel sowohl für linksseitige (lsRT) als auch für rechtsseitige (rsRT) Bestrahlungen unter 4 Gy. Im Bereich der anderen OARs lag die applizierte Dosis jeweils bei: – mittlere Dosis (lsRT): ipsilaterale linke Niere (Dmean) 13,03 (5,32–22,18) Gy, kontralaterale Niere (Dmean) <2,0 Gy, Herz (Dmean) 22,23 (13,57–27,72) Gy, Rückenmark D1 <35 Gy; – mittlere Dosis (rsRT): ipsilaterale rechte Niere (Dmean) 10,22 (6,30–18,04) Gy, kontralaterale Niere (Dmean) <2,1 Gy, Herz (Dmean) 8,02 (6,0–10,38) Gy, Rückenmark D1 <35,5 Gy.

Schlussfolgerung

Durch eine postoperative Bestrahlung mit helikaler Tomotherapie bei malignen Pleuramesotheliomen nach Pleurektomie kann eine gute Dosisabdeckung im Zielvolumen kombiniert mit der Schonung der (insbesondere kontralateralen) OARs erreicht werden.

Schlüsselwörter

Dosisconstraints Risikoorganschonung Pleuramesotheliome Postoperative Behandlung IMRT 

Notes

Compliance with ethical guidelines

Conflict of interest

C. Leitzen, T. Wilhelm-Buchstab, S. Stumpf, M. Heimann, D. Koch, C. Schmeel, B. Simon, S. Vornholt, S. Garbe, F. Röhner, F. Schoroth, H.H. Schild, H. Schüller, and T. Müdder declare that they have no competing interests.

Ethical standards

The accompanying manuscript does not include studies on humans or animals.

References

  1. 1.
    Perrot M, Wu L, Wu M, Cho BCJ (2017) Radiotherapy for the treatment of malignant pleural mesothelioma. Lancet Oncol 18(9):e532–e542CrossRefGoogle Scholar
  2. 2.
    Chance WW, Rice DC, Allen PK (2015) Hemithoracic intensity modulated radiation therapy after pleurectomy/decortication for malignant pleural mesothelioma: toxicity, patterns of failure, and a matched survival analysis. Int J Radiat Oncol Biol Phys 91(1):149–156CrossRefGoogle Scholar
  3. 3.
    Shaikh F, Zauderer MG, von Reibnitz D et al (2017) Improved outcomes with modern lung-sparing trimodality therapy in patients with malignant pleural mesothelioma. J Thorac Oncol 12(6):993–1000CrossRefGoogle Scholar
  4. 4.
    Nieder C, Gaspar LE, Ruysscher D et al (2018) Repeat reirradiation of the spinal cord: multi-national expert treatment recommendations. Strahlenther Onkol 194(5):365–374CrossRefGoogle Scholar
  5. 5.
    Dobiasch S, Goerig NL, Fietkau R et al (2018) Essential role of radiation therapy for the treatment of pancreatic cancer: novel study concepts and established treatment recommendations. Strahlenther Onkol 194(3):185–195CrossRefGoogle Scholar
  6. 6.
    Simone CB (2018) Toxicities and outcomes using whole pleural intensity-modulated proton therapy. 8th international symposium on malignant pleural Mesothelioma. UCLA, Los Angeles (29.9.2018)Google Scholar
  7. 7.
    Scorsetti M, Bignardi M, Clivio A (2010) Volumetric modulation arc radiotherapy compared with static gantry intensity-modulated radiotherapy for malignant pleural mesothelioma tumor: a feasibility study. Int J Radiat Oncol Biol Phys 77(3):942–949CrossRefGoogle Scholar
  8. 8.
    Thieke C, Nicolay NH, Sterzing F (2015) Long-term results in malignant pleural mesothelioma treated with neoadjuvant chemotherapy, extrapleural pneumonectomy and intensity-modulated radiotherapy. Radiat Oncol 10(30):267CrossRefGoogle Scholar
  9. 9.
    Ebara T, Kawamura H, Kaminuma T et al (2012) Hemithoracic intensity-modulated radiotherapy using helical tomotherapy for patients after extrapleural pneumonectomy for malignant pleural mesothelioma. J Radiat Res 53(2):288–294CrossRefGoogle Scholar
  10. 10.
    ICRU. International Commission on Radiation Units and Measurements (2010) Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU Report 83. J ICRU 10:1–106Google Scholar
  11. 11.
    Rimner A, Rosenzweig KE (2012) Novel radiation therapy approaches in malignant pleural mesothelioma. Ann Cardiothorac Surg 1(4):457–461PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rosenzweig KE, Zauderer MG, Laser B et al (2012) Pleural intensity-modulated radiotherapy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 15;83(4):1278–1283CrossRefGoogle Scholar
  13. 13.
    Botticella A, Defraene G, Nackaerts K et al (2017) Does selective pleural irradiation of malignant pleural mesothelioma allow radiation dose escalation?: a planning study. Strahlenther Onkol 193(4):285–294CrossRefGoogle Scholar
  14. 14.
    Ashton M, O’Rourke N, Currie S et al (2017) The role of radical radiotherapy in the management of malignant pleural mesothelioma: a systematic review. Radiother Oncol 125(1):1–12CrossRefGoogle Scholar
  15. 15.
    Minatel E, Trovo M, Polesel J et al (2014) Radical pleurectomy/decortication followed by high dose of radiation therapy for malignant pleural mesothelioma. Final results with long-term follow-up. Lung Cancer 83(1):78–82CrossRefGoogle Scholar
  16. 16.
    Harrabi S, Koerber S, Adeberg S et al (2017) Malignant pleural mesothelioma—pleural cavity irradiation after decortication with helical tomotherapy. Rep Pract Oncol Radiother 22(5):402–407CrossRefGoogle Scholar
  17. 17.
    Minatel E, Trovo M, Polesel J et al (2012) Tomotherapy after pleurectomy/decortication or biopsy for malignant pleural mesothelioma allows the delivery of high dose of radiation in patients with intact lung. J Thorac Oncol 7(12):1862–1866CrossRefGoogle Scholar
  18. 18.
    Fodor A, Fiorino C, Dell’Oca I et al (2011) PET-guided dose escalation tomotherapy in malignant pleural mesothelioma. Strahlenther Onkol 187(11):736–743CrossRefGoogle Scholar
  19. 19.
    Leitzen C, Wilhelm-Buchstab T, Müdder T et al (2018) Patient positioning in head and neck cancer: Setup variations and safety margins in helical tomotherapy. Strahlenther Onkol 194(5):386–391CrossRefGoogle Scholar
  20. 20.
    Zhu Z, Fu X (2015) The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer. Transl Lung Cancer Res 4(3):265–274PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bentzen SM, Constine LS, Deasy JO, Eisbruch A et al (2010) Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76(3 Suppl):S3–S9CrossRefGoogle Scholar
  22. 22.
    Maggio A, Cutaia C, Di al Dia Aet (2016) Tomotherapy PET-guided dose escalation: a dosimetric feasibility study for patients with malignant pleural mesothelioma. Strahlenther Onkol 192(2):102–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christina Leitzen
    • 1
    Email author
  • Timo Wilhelm-Buchstab
    • 1
  • Sabina Stumpf
    • 1
  • Martina Heimann
    • 1
  • David Koch
    • 1
  • Christopher Schmeel
    • 1
  • Birgit Simon
    • 1
  • Susanne Vornholt
    • 1
  • Stephan Garbe
    • 1
  • Fred Röhner
    • 1
  • Felix Schoroth
    • 1
  • Hans Heinz Schild
    • 1
  • Heinrich Schüller
    • 1
  • Thomas Müdder
    • 1
  1. 1.Radiologische Klinik, FE StrahlentherapieUniversitätsklinik BonnBonnGermany

Personalised recommendations