The impact of [68Ga]PSMA I&T PET/CT on radiotherapy planning in patients with prostate cancer

  • Thorsten Frenzel
  • Milena Tienken
  • Merve Abel
  • Christoph Berliner
  • Susanne Klutmann
  • Dirk Beyersdorff
  • Rudolf Schwarz
  • Andreas Krüll
  • Peter Bannas
Original Article

Abstract

Purpose

To determine the impact of Gallium-68-labled prostate-specific membrane antigen positron-emission tomography/computed tomography ([68Ga]PSMA PET/CT) on radiotherapy planning for primary disease, biochemical cancer relapse, and advanced disease of prostate cancer.

Methods

A total of 106 patients with prostate cancer scheduled for radiation therapy underwent 120 [68Ga]PSMA PET/CT scans prior to radiotherapy treatment. In 20 cases, patients underwent [68Ga]PSMA PET/CT for primary therapy (PT), 75 cases were referred for biochemical relapse after surgery (RL), and 25 cases were intended for palliative treatment of localized metastases (MD). We retrospectively compared the impact of [68Ga]PSMA PET/CT on lesion detection and treatment decision to CT alone.

Results

[68Ga]PSMA PET/CT revealed a total of 271 positive lesions, whereas CT detected 86 lesions (32%). Overall, the radiotherapy regime was changed in 55 of 120 cases (46%) based on the higher detection rate of [68Ga]PSMA PET/CT: in 15% of cases with PT, in 43% of cases with RL, and in 44% of cases with MD.

Conclusion

[68Ga]PSMA PET/CT is superior to CT alone for lesion detection in prostate cancer, thereby significantly impacting on radiotherapy planning for primary disease, biochemical cancer relapse, and advanced disease of prostate cancer.

Keywords

Prostate carcinoma Positron-emission tomography/computed tomography Prostate-specific membrane antigen Gallium 68 Radiation therapy 

Der Einfluss von [68Ga]-PSMA-I&T-PET/CT auf die Radiotherapieplanung bei Patienten mit Prostatakarzinom

Zusammenfassung

Zielsetzung

Es sollte der Einfluss eines Gallium-68-markierten-prostataspezifischen-Membranantigen-Positronenemissionstomogamms/Röntgencomputertomogramms ([68Ga]-PSMA-PET/CT) auf die strahlentherapeutische Therapieentscheidung für Patienten mit Primärtherapie, auf die Therapie eines biochemischen Rezidivs und auf die Behandlung eines fortgeschrittenen Prostatakarzinoms untersucht werden.

Methoden

Insgesamt 106 Patienten mit einem Prostatakarzinom erhielten insgesamt 120 [68Ga]-PSMA-PET/CT-Untersuchungen vor ihrer Strahlenbehandlung. Hiervon erhielten 20 Patienten ein [68Ga]-PSMA-PET/CT im Rahmen ihrer Primärtherapie (PT), 75 Patienten wurde nach Prostatektomie bei biochemischem Rezidiv (RL) und 25 Patienten zur Palliativtherapie lokalisierter Metastasen (MD) zugewiesen. Retrospektiv wurde der Einfluss des [68Ga]-PSMA-PET/CT auf die Erkennung von Läsionen und die Therapieentscheidung im Vergleich zu einem alleinigen CT untersucht.

Ergebnisse

Die [68Ga]-PSMA-PET/CT zeigten insgesamt 271 positive Läsionen, das CT allein entdeckte nur 86 (32 %). Aufgrund der höheren Detektionsrate des [68Ga]-PSMA-PET/CT wurde das Therapiekonzept in 55 von 120 Fällen (46 %) geändert: in 15 % der Fälle mit PT, 43 % der Fälle mit RL und in 44 % der Fälle mit MD.

Schlussfolgerung

[68Ga]-PSMA-PET/CT ist einer alleinigen CT-Untersuchung bei der Detektion von Läsionen überlegen und hat damit einen signifikanten Einfluss auf die strahlentherapeutische Therapieentscheidung bei der Primärtherapie, der Therapie eines biochemischen Rezidivs und der Therapie von Patienten mit einem metastasierten Prostatakarzinom.

Schlüsselwörter

Prostatakarzinom Positronenemissionstomographie/Computertomographie Prostataspezifisches Membranantigen Gallium 68 Strahlentherapie 

Notes

Acknowledgements

We thank Heike Woicke for her assistance in the preparation of the ethics committee application.

Conflict of interest

T. Frenzel, M. Tienken, M. Abel, C. Berliner, S. Klutmann, D. Beyersdorff, R. Schwarz, A. Krüll, and P. Bannas declare that they have no competing interests.

References

  1. 1.
    Erlay J, Ervik M, Dikshit R et al (2012) Cancer incidence and mortality worldwide: IARC CancerBase No. 11. In: GLOBOCAN 2012 v1. 0Google Scholar
  2. 2.
    Stewart B, Wild CP et al (2014) World cancer report 2014. CEDEX, LyonGoogle Scholar
  3. 3.
    Fahmy O, Khairul-Asri MG, Hadi SHSM et al (2017) The role of radical prostatectomy and radiotherapy in treatment of locally advanced prostate cancer: a systematic review and meta-analysis. Urol Int.  https://doi.org/10.1159/000478789 PubMedGoogle Scholar
  4. 4.
    Golbari NM, Katz AE (2017) Salvage therapy options for local prostate cancer recurrence after primary radiotherapy: a literature review. Curr Urol Rep 18:63CrossRefPubMedGoogle Scholar
  5. 5.
    Bannas P, Weber C, Adam G, et al (2011) Contrast-enhanced [(18)F]fluorodeoxyglucose-positron emission tomography/computed tomography for staging and radiotherapy planning in patients with anal cancer. Int J Radiat Oncol Biol Phys 81:445–451CrossRefPubMedGoogle Scholar
  6. 6.
    Kane CJ, Amling CL, Johnstone PAS et al (2003) Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 61:607–611CrossRefPubMedGoogle Scholar
  7. 7.
    Picchio M, Giovannini E, Crivellaro C et al (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96:347–350CrossRefPubMedGoogle Scholar
  8. 8.
    Pinkawa M, Eble MJ, Mottaghy FM (2011) PET and PET/CT in radiation treatment planning for prostate cancer. Expert Rev Anticancer Ther 11:1033–1039CrossRefPubMedGoogle Scholar
  9. 9.
    Souvatzoglou M, Krause BJ, Pürschel A et al (2011) Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol 99:193–200CrossRefPubMedGoogle Scholar
  10. 10.
    Schwarzenböck SM, Kurth J, Gocke C et al (2013) Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer. Eur J Nucl Med Mol Imaging 40(Suppl 1):S28–S35CrossRefPubMedGoogle Scholar
  11. 11.
    Picchio M, Berardi G, Fodor A et al (2014) (11)C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. Eur J Nucl Med Mol Imaging 41:1270–1279CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia JR, Jorcano S, Soler M et al (2015) 11C-Choline PET/CT in the primary diagnosis of prostate cancer: impact on treatment planning. Q J Nucl Med Mol Imaging 59:342–350PubMedGoogle Scholar
  13. 13.
    López E, Lazo A, Gutiérrez A et al (2015) Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer. Rep Pract Oncol Radiother 20:104–112CrossRefPubMedGoogle Scholar
  14. 14.
    Goldstein J, Even-Sapir E, Ben-Haim S et al (2017) Does choline PET/CT change the management of prostate cancer patients with biochemical failure? Am J Clin Oncol 40:256–259CrossRefPubMedGoogle Scholar
  15. 15.
    Würschmidt F, Petersen C, Wahl A et al (2011) [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol 6(44).  https://doi.org/10.1186/1748-717X-6-44 PubMedPubMedCentralGoogle Scholar
  16. 16.
    Vees H, Steiner C, Dipasquale G et al (2012) Target volume definition in high-risk prostate cancer patients using sentinel node SPECT/CT and 18 F‑choline PET/CT. Radiat Oncol 7:134CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moussaid Y, Bonardel G, Jacob J et al (2013) Single center experience of (18F)-fluorocholine positron emission tomography: analysis of its impact on salvage local therapy in patients with prostate adenocarcinoma. Cancer Radiother 17:259–264CrossRefPubMedGoogle Scholar
  18. 18.
    Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68ga-PSMA Ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674CrossRefPubMedGoogle Scholar
  19. 19.
    Berliner C, Tienken M, Frenzel T, et al (2017) Detection rate of PET/CT in patients with biochemical relapse of prostate cancer using [68Ga] PSMA I&T and comparison with published data of [68Ga] PSMA HBED-CC. Eur J Nucl Med Mol Imaging 44:670–677CrossRefPubMedGoogle Scholar
  20. 20.
    Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42:197–209CrossRefPubMedGoogle Scholar
  21. 21.
    Shakespeare TP (2015) Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists. Radiat Oncol 10:233CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sterzing F, Kratochwil C, Fiedler H et al (2016) (68)Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur J Nucl Med Mol Imaging 43:34–41CrossRefPubMedGoogle Scholar
  23. 23.
    Bluemel C, Linke F, Herrmann K et al (2016) Impact of (68)Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. Ejnmmi Res 6:78CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Dewes S, Schiller K, Sauter K et al (2016) Integration of (68)Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: a retrospective study. Radiat Oncol 11:73CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martin R, Jüttler S, Müller M, Wester H‑J (2014) Cationic eluate pretreatment for automated synthesis of [68 Ga] CPCR4. 2. Nucl Med Biol 41:84–89CrossRefPubMedGoogle Scholar
  26. 26.
    Weineisen M, Simecek J, Schottelius M et al (2014) Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. Ejnmmi Res 4:63CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Saokar A, Islam T, Jantsch M et al (2010) Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin Imaging 34:361–366CrossRefPubMedGoogle Scholar
  28. 28.
    Sankineni S, Brown AM, Fascelli M et al (2015) Lymph node staging in prostate cancer. Curr Urol Rep 16:30CrossRefPubMedGoogle Scholar
  29. 29.
    Scher HI, Morris MJ, Stadler WM et al (2016) Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol 34:1402–1418CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    D’Amico AV, Whittington R, Malkowicz SB et al (1998) Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280(11):969–974CrossRefPubMedGoogle Scholar
  31. 31.
    Henkenberens C, Derlin T, Bengel FM et al (2017) Patterns of relapse as determined by (68)Ga-PSMA ligand PET/CT after radical prostatectomy : Importance for tailoring and individualizing treatment. Strahlenther Onkol.  https://doi.org/10.1007/s00066-017-1231-9 Google Scholar
  32. 32.
    Alongi F, Fersino S, Giaj Levra N et al (2015) Impact of 18F-choline PET/CT in the decision-making strategy of treatment volumes in definitive prostate cancer volumetric modulated radiation therapy. Clin Nucl Med 40:e496–e500CrossRefPubMedGoogle Scholar
  33. 33.
    Henkenberens C, von Klot CA, Ross TL et al (2016) (68)Ga-PSMA ligand PET/CT-based radiotherapy in locally recurrent and recurrent oligometastatic prostate cancer : Early efficacy after primary therapy. Strahlenther Onkol 192:431–439CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Frenzel
    • 1
  • Milena Tienken
    • 2
  • Merve Abel
    • 2
  • Christoph Berliner
    • 2
  • Susanne Klutmann
    • 2
  • Dirk Beyersdorff
    • 2
    • 3
  • Rudolf Schwarz
    • 1
  • Andreas Krüll
    • 1
  • Peter Bannas
    • 2
  1. 1.Ambulatory Center, Department for Radiation OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department for Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Martini KlinikUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations