Skip to main content

Advertisement

Log in

Association of genetic variants in apoptosis genes FAS and FASL with radiation-induced late toxicity after prostate cancer radiotherapy

Zusammenhang zwischen Polymorphismen in den Apoptosegenen FAS und FASL mit strahleninduzierter Spättoxizität nach Radiotherapie des Prostatakarzinoms

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Fas ligand (FASL) triggers apoptotic cell death by cross-linking with its receptor FAS, and after irradiation, expression of FAS and FASL is increased. In the present study, we investigated the association between common polymorphisms in the genes for FAS and FASL and the risk of late side effects after radiotherapy for prostate cancer.

Patients and methods

The role of FAS (− 1377G > A, rs2234767 and − 670A > G, rs1800682) and FASL (− 844C > T, rs763110) gene polymorphisms in the development of high-grade late rectal and/or urinary toxicity (defined as late toxicity EORTC/RTOG grade ≥ 2) was analyzed in 607 prostate cancer patients treated with radiotherapy. DNA was isolated and the selected polymorphisms were determined by 5’-nuclease (TaqMan) assays.

Results

After a median follow-up time of 82 months, high-grade late rectal and/or urinary toxicity was observed in 175 patients (29.7 %). Univariate analysis revealed a significantly decreased risk of high-grade late toxicity in carriers of the FASL − 844T allele. After adjusting for covariates, patients harboring at least one − 844T allele (CT or TT genotype) remained at decreased risk of high-grade late toxicity compared with patients harboring the CC genotype [hazard ratio (HR) 0.585, 95 %CI 0.39–0.878; p = 0.010]. For patients with the − 844TT genotype, the HR was 0.404 (95 %CI 0.171–0.956; p = 0.039) in multivariate analysis. No significant associations were found for the remaining polymorphisms analyzed.

Conclusions

These results provide the first evidence that the presence of the FASL − 844T variant allele may have a protective effect against the development of high-grade late rectal and/or urinary side effects after prostate cancer radiotherapy.

Zusammenfassung

Hintergrund

Fas-Ligand (FASL) triggert durch Bindung an seinen Rezeptor FAS den apoptotischen Zelltod, desweiteren konnte nach Bestrahlung eine Überexpression von FAS und FASL beobachtet werden. Ziel der vorliegenden prospektiven Studie war die Untersuchung der Zusammenhänge von Einzelnukleotidpolymorphismen in den Genen FAS und FASL mit dem Risiko von höhergradigen Spätfolgen nach Radiotherapie des Prostatakarzinoms.

Patienten und Methoden

Assoziationen zwischen Genvarianten in FAS (− 1377G > A, rs2234767 und − 670A > G, rs1800682) und FASL (− 844C > T, rs763110) und höhergradigen rektalen und/oder urogenitalen Spätfolgen (definiert als Spättoxizität EORTC/RTOG Grad ≥ 2) wurden bei 607 Prostatakarzinompatienten untersucht. Nach DNA-Isolierung wurde die Genotypisierung der Kandidatenpolymorphismen mittels eines 5’-Nuklease-(TaqMan-)Assays durchgeführt.

Ergebnisse

Innerhalb einer medianen Nachbeobachtungszeit von 82 Monaten traten bei 175 Patienten (29,7 %) höhergradige rektale und/oder urogenitale Spätfolgen auf. In der univariaten Analyse zeigte sich ein signifikant niedrigeres Risiko für das Auftreten von höhergradigen Spätfolgen bei Trägern des − 844T-FASL-Allels. Auch die nachfolgende multivariate Analyse ergab für Träger mit zumindest einem − 844T-FASL-Allel (CT- oder TT-Genotyp) ein niedrigeres Risiko für höhergradige Spätfolgen als für Patienten mit dem CC-Genotyp (Hazard Ratio [HR] 0,585; 95 %-KI 0,39–0,878; p = 0,010). Bei Patienten mit dem − 844-TT-Genotyp lag die HR für Spätfolgen bei 0,404 (95 %-KI 0,171–0,956; p = 0,039). Für die übrigen Genpolymorphismen konnten keine signifikanten Zusammenhänge gefunden werden.

Schlussfolgerung

Aus den Ergebnissen geht hervor, dass das Vorhandensein des − 844T-FASL-Allels möglicherweise einen protektiven Effekt hinsichtlich des Auftretens von Spätfolgen nach Radiotherapie bei Prostatakarzinompatienten mit sich bringt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Belka C, Marini P, Budach W et al (1998) Radiation induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up- regulation of CD95/Fas/APO-1 ligand. Radiat Res 149:588–595

    Article  CAS  PubMed  Google Scholar 

  2. Blattmann C, Thiemann M, Stenzinger A et al (2012) Radiosensitization by histone deacetylase inhibition in an osteosarcoma mouse model. Strahlenther Onkol 188:1038–1047

    Article  Google Scholar 

  3. Bunz F, Hwang PM, Torrance C et al (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chang-Claude J, Ambrosone CB, Lilla C et al (2009) Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer 100:1680–1686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Chen L, Park SM, Tumanov AV et al (2010) CD95 promotes tumour growth. Nature 465:492–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cordes N, Rödel F, Rodemann HP (2012) Molecular signaling pathways. Mechanisms and clinical use. Strahlenther Onkol 188:308–311

    Article  PubMed  Google Scholar 

  7. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  8. Greve B, Sheikh-Mounessi F, Kemper B et al (2012) Survivin, a target to modulate the radiosensitivity of Ewing’s sarcoma. Strahlenther Onkol 188:1038–1047

    Article  CAS  PubMed  Google Scholar 

  9. Gudkov AV, Komarova EA (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129

    Article  CAS  PubMed  Google Scholar 

  10. Heinzelmann F, Jendrossek V, Lauber K et al (2006) Irradiation-induced pneumonitis mediated by the CD95/CD95-ligand system. J Natl Cancer Inst 98:1248–1251

    Article  CAS  PubMed  Google Scholar 

  11. Houston A, O’Connell J (2004) The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 4:321–326

    Article  CAS  PubMed  Google Scholar 

  12. Huang QR, Morris D, Manolios N (1997) Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol 34:577–582

    Article  CAS  PubMed  Google Scholar 

  13. Jung H, Beck-Bornholdt HP, Svoboda V et al (2012) Late complications after radiotherapy for prostate cancer. Strahlenther Onkol 188:965–974

    Article  CAS  PubMed  Google Scholar 

  14. Kanemitsu S, Ihara K, Saifddin A et al (2002) A functional polymorphism in fas (CD95/APO-1) gene promoter associated with systemic lupus erythematosus. J Rheumatol 29:1183–1188

    CAS  PubMed  Google Scholar 

  15. Long JS, Ryan KM (2012) New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 31:5045–5060

    Article  CAS  PubMed  Google Scholar 

  16. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294

    Article  CAS  PubMed  Google Scholar 

  17. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  18. Luce A, Courtin A, Levalois C et al (2009) Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells. Carcinogenesis 30:432–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Neff TA, Guo RF, Neff SB et al (2011) Relationship of acute lung inflammatory injury to Fas/FasL system. Transplantation 92:523–528

    Article  CAS  PubMed  Google Scholar 

  20. Nishioka A, Ogawa Y, Kubonishi I et al (1999) An augmentation of Fas (CD95/APO 1) antigen induced by radiation: flow cytometry analysis of lymphoma and leukemia cell lines. Int J Mol Med 3:275–278

    CAS  PubMed  Google Scholar 

  21. O’Connell J, Bennett MW, O’Sullivan GC et al (1999) The Fas counterattack: cancer as a site of immune privilege. Immunol Today 20:46–52

    Article  Google Scholar 

  22. Rzeszowska-Wolny J, Przybyszewski WM, Widel M (2009) Ionizing radiation-induced bystander effects, potential targets for modulation of radiotherapy. Eur J Pharmacol 625:156–164

    Article  CAS  PubMed  Google Scholar 

  23. Sibley K, Rollinson S, Allan JM et al (2003) Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res 63:4327–4330

    CAS  PubMed  Google Scholar 

  24. Simstein R, Burow M, Parker A et al (2003) Apoptosis, chemoresistance, and breast cancer: insights from the MCF-7 cell model system. Exp Biol Med (Maywood) 228:995–1003

    Google Scholar 

  25. Sun T, Miao X, Zhang X et al (2004) Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst 96:1030–1036

    Article  CAS  PubMed  Google Scholar 

  26. Tan XL, Popanda O, Ambrosone CB et al (2006) Association between TP53 and p21 genetic polymorphisms and acute side effects of radiotherapy in breast cancer patients. Breast Cancer Res Treat 97:255–262

    Article  CAS  PubMed  Google Scholar 

  27. Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66:1281–1293

    Article  PubMed  Google Scholar 

  28. Wang W, Zheng Z, Yu W et al (2012) Polymorphisms of the FAS and FASL genes and risk of breast cancer. Oncol Lett 3:625–628

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Wu J, Metz C, Xu X et al (2003) A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol 170:132–138

    Article  CAS  PubMed  Google Scholar 

  30. Wu J, Richards MH, Huang J et al (2011) Human FasL gene is a target of β-catenin/T-cell factor pathway and complex FasL haplotypes alter promoter functions. PLoS One 6:e26143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yang M, Sun T, Wang L et al (2008) Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin Cancer Res 14:3230–3236

    Article  CAS  PubMed  Google Scholar 

  32. Yang M, Zhang L, Bi N et al (2011) Association of P53 and ATM polymorphisms with risk of radiation-induced pneumonitis in lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 79:1402–1407

    Article  CAS  PubMed  Google Scholar 

  33. Zhang B, Sun T, Xue L et al (2007) Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis 28:1067–1073

    Article  CAS  PubMed  Google Scholar 

  34. Zhou L, Yuan R, Serggio L (2003) Molecular mechanisms of irradiation-induced apoptosis. Front Biosci 8:d9–d19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. E.-M. Thurner, S. Krenn-Pilko, U. Langsenlehner, W. Renner, A. Gerger, K.S. Kapp, and T. Langsenlehner state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Langsenlehner MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thurner, EM., Krenn-Pilko, S., Langsenlehner, U. et al. Association of genetic variants in apoptosis genes FAS and FASL with radiation-induced late toxicity after prostate cancer radiotherapy. Strahlenther Onkol 190, 304–309 (2014). https://doi.org/10.1007/s00066-013-0485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-013-0485-0

Keywords

Schlüsselwörter

Navigation