Skip to main content
Log in

CAR, CRS und Neurotoxizität: schwere Komplikationen der Immuntherapie

Was der Intensivmediziner wissen muss

CARs, CRS and neurotoxicity: severe complications after administration of immunotherapy

Essentials for intensivists

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Zusammenfassung

Hintergrund

Die Entwicklung der Therapie mit T‑Zellen, die chimäre Antigenrezeptoren exprimieren, (CAR-T-Zellen) hat eine Revolution in der Behandlung refraktärer/rezidivierter Verläufe der B‑ALL und des diffus großzelligen B‑Zell-Lymphoms ausgelöst. Dabei können die Nebenwirkungen, das „cytokine release syndrome“ (CRS) und das „CAR-T-cell-related encephalopathy syndrome“ (CRES), tödlich verlaufen. Das Management beider Komplikationen stellt eine wichtige Säule in der Therapie mit CAR-T-Zellen dar.

Fragestellung

Diagnose, Klinik und Verlauf intensivmedizinisch relevanter Nebenwirkungen unter Therapie mit CAR-T-Zellen.

Material und Methoden

Zusammenfassung von Inzidenz, Mortalität und Behandlung schwerer Nebenwirkungen unter CAR-T-Zellen aus aktuellen Studien und Empfehlung von Algorithmen zur Diagnostik und Therapie spezifischer Toxizitäten.

Ergebnisse

Nebenwirkungen unter Therapie mit CAR-T-Zellen sind vor allem das CRS und das CRES. Beide Komplikationen können lebensbedrohlich verlaufen, bei adäquater Behandlung besteht jedoch eine gute Prognose.

Schlussfolgerungen

Kliniken, die eine solche experimentelle Therapie mit CAR-T-Zellen durchführen, profitieren von einem internen Therapiealgorithmus zur Behandlung und frühzeitigen Erkennung von Komplikationen.

Abstract

Background

The development of chimeric antigen receptor (CAR) T‑cells has shown promising results in relapsed/refractory B‑cell acute lymphoblastic leukemia/lymphoma (B-ALL) and diffuse large cell B‑cell lymphoma. Complications, especially cytokine release syndrome (CRS) and CAR T‑cell related encephalopathy syndrome (CRES), can be life threatening. The management of both plays a key role in CAR T‑cell therapy.

Objectives

Diagnosis, clinical presentation and development of complications in the treatment with CAR T‑cells.

Materials and methods

Summary of incidence, mortality and treatment of severe complications after administration of CAR T‑cells referring to current studies and therapy recommendations.

Results

Complications after administration of CAR T‑cells, especially CRS and CRES, can be life threatening. The timely identification of side effects and their appropriate treatment usually leads to complete recovery.

Conclusions

Using a therapy algorithm in the treatment with CAR T‑cells allows safe management of toxicities and can be helpful in recognizing them in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Paul Ehrlich Institut (2018) EMA: CAR-T-Zelltherapie demnächst auch in Europa. https://www.pei.de/DE/home/europaeische-kommission-erteilt-zulassung-fuer-car-t-zelltherapeutika.html. Zugegriffen: 4. Okt. 2018

    Google Scholar 

  2. Bonifant CL, Jackson HJ, Brentjens RJ et al (2016) Toxicity and management in CAR T‑cell therapy. Mol Ther Oncolytics 3:16011

    Article  CAS  Google Scholar 

  3. Borchmann P et al (2018) An updated analysis of JULIET, a global pivotal phase 2 trial of tisagenlecleucel in adult patients with relapsed or refractory diffuse large B—cell lymphoma. HemaSphere 2(S1):799

    Google Scholar 

  4. Brudno JN, Kochenderfer JN (2016) Toxicities of chimeric antigen receptor T cells: recognition and management. Blood 127:3321–3330

    Article  CAS  Google Scholar 

  5. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra225

    Article  CAS  Google Scholar 

  6. Deisseroth A, Ko CW, Nie L et al (2015) FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin Cancer Res 21:950–954

    Article  CAS  Google Scholar 

  7. Grady D (2012) In Girl’s Last Hope, Altered Immune Cells Beat Leukemia. https://www.nytimes.com/2012/12/10/health/a-breakthrough-against-leukemia-using-altered-t-cells.html. Zugegriffen: 09.12.2018

  8. Hay KA, Hanafi LA, Li D et al (2017) Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T‑cell therapy. Blood 130:2295–2306

    Article  CAS  Google Scholar 

  9. https://www.eortc.be/services/doc/ctc/ctcae_4.03_2010-06-14_quickreference_5x7.pdf. Zugegriffen: 09.12.2018

  10. Medienmitteilung Roche: Basel (2017) https://www.roche.com/de/media/store/releases/med-cor-2017-08-30.htm. Zugegriffen: 09.12.2018

  11. Jensen MC, Riddell SR (2015) Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 33:9–15

    Article  CAS  Google Scholar 

  12. Kochenderfer JN, Somerville RPT, Lu T et al (2017) Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 25:2245–2253

    Article  CAS  Google Scholar 

  13. Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195

    Article  CAS  Google Scholar 

  14. Lee DW, Kochenderfer JN, Stetler-Stevenson M et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528

    Article  CAS  Google Scholar 

  15. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  CAS  Google Scholar 

  16. Murayi R, Chittiboina P (2016) Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 32:2293–2302

    Article  Google Scholar 

  17. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene Ciloleucel CAR T‑cell therapy in refractory large B‑cell lymphoma. N Engl J Med. https://doi.org/10.1056/NEJMoa1707447

    Article  PubMed  PubMed Central  Google Scholar 

  18. Neelapu SS, Tummala S, Kebriaei P et al (2018) Chimeric antigen receptor T‑cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 15:47–62

    Article  CAS  Google Scholar 

  19. Plenz G, Song ZF, Tjan TD et al (2001) Activation of the cardiac interleukin-6 system in advanced heart failure. Eur J Heart Fail 3:415–421

    Article  CAS  Google Scholar 

  20. Porter D, Frey N, Wood PA et al (2018) Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 11:35

    Article  CAS  Google Scholar 

  21. Roberts ZJ, Better M, Bot A et al (2017) Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma. https://doi.org/10.1080/10428194.2017.1387905

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8:1237–1247

    Article  CAS  Google Scholar 

  23. Rose S (2017) First-Ever CAR T‑cell Therapy Approved in U.S. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-NB2017-126

    Article  Google Scholar 

  24. Schuster SJ, Svoboda J, Chong EA et al (2017) Chimeric antigen receptor T cells in refractory B‑cell lymphomas. N Engl J Med. https://doi.org/10.1056/nejmoa1708566

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singh N, Hofmann TJ, Gershenson Z et al (2017) Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T‑cell function. Cytotherapy 19:867–880

    Article  CAS  Google Scholar 

  26. Tran E, Longo DL, Urba WJ (2017) A milestone for CAR T cells. N Engl J Med 377:2593–2596

    Article  Google Scholar 

  27. Turtle CJ, Hanafi LA, Berger C et al (2016) Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8:355ra116

    Article  CAS  Google Scholar 

  28. Modifiziert nach Sevier Medical. CC BY 3.0; https://creativecommons.org/licenses/by/3.0/deed.de. https://smart.servier.com/. Zugegriffen: 23. Nov. 2018

  29. Wang X, Riviere I (2016) Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015

    Article  CAS  Google Scholar 

  30. Yang Y (2015) Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 125:3335–3337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Böll.

Ethics declarations

Interessenkonflikt

J. Prinz, Y. d’Hargues, P. Gödel, A. Shimabukuro-Vornhagen und M. Kochanek geben an, dass kein Interessenkonflikt besteht. B. Böll erhielt Honorare und/oder Forschungsunterstützung von Baxalta, Celgene, MSD, Astellas, Johnson & Johnson, Takeda, und Mundipharma außerhalb der vorliegenden Arbeit.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinz, J., d’Hargues, Y., Gödel, P. et al. CAR, CRS und Neurotoxizität: schwere Komplikationen der Immuntherapie. Med Klin Intensivmed Notfmed 115, 198–204 (2020). https://doi.org/10.1007/s00063-018-0518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-018-0518-7

Schlüsselwörter

Keywords

Navigation