Sind initialer pH- und Laktatwert nach kardiopulmonaler Wiederbelebung immer entscheidend?

Kasuistiken
  • 24 Downloads

Zusammenfassung

Aufgrund eines akuten Koronarsyndroms erlitt ein 52-jähriger Patient ein therapierefraktäres Kammerflimmern. Es wurde unmittelbar mit einer Laienreanimation begonnen. Unter Fortführung der kardiopulmonalen Reanimationsmaßnahmen sowie nach repetitiven Defibrillationen und intravenöser Gabe von Amiodaron konnte temporär eine Wiederherstellung der Kreislaufverhältnisse etabliert werden. Bei persistierendem Kammerflimmern wurde die Indikation zur mechanischen Reanimation mittels LUCAS®-Device gestellt und der Patient nach insgesamt 90-minütiger Reanimationsdauer zur Notfallkoronarangiographie vorgestellt. Es zeigte sich eine ausgeprägte Laktatacidose mit einem pH-Wert von 6,7 in der initialen Blutgasanalyse (BGA), weshalb im multiprofessionellen Team die Entscheidung gegen eine extrakorporale Membranoxygenierung getroffen wurde. Nach Mehrfachstenting der rechten Koronararterie (RCA) und der linksseitigen Koronararterie (LAD) unter fortlaufender mechanischer Reanimation sowie anschließender therapeutischer Hypothermie konnte der Patient rasch extubiert werden. Der Patient wies im Verlauf keinerlei neurologische Defizite auf.

Schlüsselwörter

Herz-Kreislauf-Stillstand Kardiopulmonale Reanimation Prognose Mechanische kardiopulmonale Reanimation Kardiogener Schock 

Are the initial pH and the lactate values after cardiopulmonary resuscitation always crucial?

Abstract

A 52-year-old man suffered an out-of-hospital cardiac arrest (OHCA) and bystander reanimation was immediately started. The initial electrocardiogram indicated ventricular fibrillation. After repetitive defibrillations as well as intravenous administration of amiodarone, a temporary return of spontaneous circulation (ROSC) could be established. Due to unstable cardiovascular conditions with recurrence of ventricular fibrillation, mechanical resuscitation with the help of the LUCAS™ device was initiated, and the patient was admitted to our hospital for emergency coronary angiography after a cumulative period of approximately 90 min. The initial blood gas analysis displayed a significant lactate acidosis with a pH value of 6.7. Therefore, in a multidisciplinary team, the decision was made against an extracorporeal membrane oxygenation and for a coronary angiography under continuation of mechanical resuscitation. After multiple stenting of the right coronary artery and left anterior descending coronary artery, permanent ROSC could be established. The patient was admitted to our intensive care unit, where he was further treated according to the S3-guideline for infarct-related cardiogenic shock. In the course of time, the patient was quickly extubated without any neurological deficits.

Keywords

Cardiac arrest Cardiopulmonary resuscitation Prognosis Mechanical cardiopulmonary resuscitation Cardiogenic shock 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Hohmann, R. Pfister und G. Michels geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Alle Patienten, die über Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts zu identifizieren sind, haben hierzu ihre schriftliche Einwilligung gegeben.

Literatur

  1. 1.
    Link MS, Berkow LC, Kudenchuk PJ et al (2015) Part 7: advanced cardiovascular life support – 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132(Suppl 2):S444–S464CrossRefPubMedGoogle Scholar
  2. 2.
    Karam N, Marijon E, Dumas F et al (2017) Characteristics and outcomes of out-of-hospital sudden cardiac arrest according to the time of occurrence. Resuscitation 116:16–21CrossRefPubMedGoogle Scholar
  3. 3.
    Soar J, Nolan JP, Böttiger BW et al (2015) European Resuscitation Council guidelines for resuscitation 2015 section 3. Adult advanced life support. Resuscitation 95:100–147CrossRefPubMedGoogle Scholar
  4. 4.
    Debaty G, Babaz V, Durand M et al (2017) Prognostic factors for extracorporeal cardiopulmonary resuscitation recipients following out-of-hospital refractory cardiac arrest. A systematic review and meta-analysis. Resuscitation 112:1–10CrossRefPubMedGoogle Scholar
  5. 5.
    Sideris G, Voicu S, Dillinger JG et al (2011) Value of post-resuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation 82:1148–1153CrossRefPubMedGoogle Scholar
  6. 6.
    Saugel B, Trepte CJ, Heckel K et al (2015) Hemodynamic management of septic shock: is it time for “individualized goal-directed hemodynamic therapy” and for specifically targeting the microcirculation? Shock 43:522–529CrossRefPubMedGoogle Scholar
  7. 7.
    Rousse N, Robin E, Juthier F et al (2016) Extracorporeal life support in out-of-hospital refractory cardiac arrest: thoughts and progress. Artif Organs 40(9):904–909CrossRefPubMedGoogle Scholar
  8. 8.
    Jouffroy R, Lamhaut L, Guyard A et al (2014) Base excess and lactate as prognostic indicators for patients treated by extracorporeal life support after out hospital cardiac arrest due to acute coronary syndrome. Resuscitation 85(12):1764–1768CrossRefPubMedGoogle Scholar
  9. 9.
    Rigamonti F, Montecucco F, Boroli F et al (2016) The peak blood lactate during the first 24 h predicts mortality in acute coronary syndrome patients under extracorporeal membrane oxygenation. Int J Cardiol 221:741–745CrossRefPubMedGoogle Scholar
  10. 10.
    Mullner M, Sterz F, Domanovits H et al (1997) The association between blood lactate concentration on admission, duration of cardiac arrest, and functional neurological recovery in patients resuscitated from ventricular fibrillation. Intensive Care Med 33:751–754Google Scholar
  11. 11.
    Momiyama Y, Yamada W, Miyata K et al (2017) Prognostic values of blood pH and lactate levels in patients resuscitated from out-of-hospital cardiac arrest. Acute Med Surg 4(1):25–30CrossRefPubMedGoogle Scholar
  12. 12.
    Shin J, Lim YS, Kim K et al (2017) Initial blood pH during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients: a multicenter observational registry-based study. Crit Care 21(1):322CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Siegenthaler W (2005) Differentialdiagnose, 19. Aufl. Thieme, StuttgartGoogle Scholar
  14. 14.
    Geisler AC, Söffker G, Breuning F et al (2014) Der besondere Fall – Optimale Rettungskette. Hamb Arztebl 68(10):44–46Google Scholar
  15. 15.
    Tsai FC, Wang YC, Huang YK et al (2007) Extracorporeal life support to terminate refractory ventricular tachycardia. Crit Care Med 35:1673–1676CrossRefPubMedGoogle Scholar
  16. 16.
    Morimura N, Sakamoto T, Nagao K et al (2011) Extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest: a review of the Japanese literature. Resuscitation 82:10–14CrossRefPubMedGoogle Scholar
  17. 17.
    Slottosch I, Liakopoulos O, Kuhn E et al (2017) Lactate and lactate clearance as valuable tool to evaluate ECMO therapy in cardiogenic shock. J Crit Care 42:35–41CrossRefPubMedGoogle Scholar
  18. 18.
    Lundgrén-Laine H, Kontio E, Perttilä J et al (2011) Managing daily intensive care activities: an observational study concerning ad hoc decision making of charge nurses and intensivists. Crit Care 15(4):R188CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik III für Innere MedizinHerzzentrum der Universität zu KölnKölnDeutschland

Personalised recommendations