Skip to main content
Log in

Neue Nierenfunktionstests: Renal-funktionelle Reserve und Furosemidstresstest

New kidney function tests: Renal functional reserve and furosemide stress test

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Eine akute Nierenfunktionsstörung („acute kidney injury“, AKI) betrifft etwa 30–50 % der Intensivpatienten, bei 10–15 % ist erstmals eine Nierenersatztherapie notwendig. Die Krankenhaussterblichkeit beträgt bis zu 50 %. Von den Überlebenden werden innerhalb der nächsten 10 Jahre bis zu 20 % terminal niereninsuffizient. Eine exakte Beurteilung der aktuellen Nierenfunktion sowie eine Vorhersage über den zu erwartenden Verlauf und die Prognose bez. der renalen Erholung sind essenziell, um zeitnah Maßnahmen zur Prophylaxe und Therapie einleiten zu können. Die klassischen Retentionsmarker Kreatinin und Harnstoff sind in diesem Kontext wenig hilfreich, weil beide eine Abnahme der glomerulären Filtrationsrate (GFR) nur ungenau und zu spät anzeigen. Cystatin C ist ein neuer Marker, der im Vergleich zu Kreatinin früher und weniger beeinflusst von anderen Faktoren eine Reduktion der GFR anzeigt. Neue dynamische Funktionsmarker sind der Furosemidstresstest (FST) und die Bestimmung der renal-funktionellen Reserve (RFR). Der FST besteht aus der Kurzinfusion von 1–1,5 mg/kgKG Furosemid bei Patienten mit AKI. Ein Anstieg der Diurese auf >100 ml/h deutet auf eine GFR von >20 ml/min hin und macht eine Progression in das Stadium III der AKI oder eine Dialysenotwendigkeit unwahrscheinlich. Die Bestimmung der RFR erfolgt durch die orale oder intravenöse Applikation einer hohen Aminosäurendosis. Die dadurch verursachte Zunahme der GFR erlaubt Rückschlüsse über eine noch vorhandene Reservekapazität und ermöglicht eine genauere Beurteilung der renalen Erholung. Beide Tests können in Zukunft präzisere Aussagen über die aktuelle Nierenfunktion sowie die zu erwartende Entwicklung im Kurz- und Langzeitverlauf liefern.

Abstract

Acute kidney injury (AKI) occurs in 30–50% of all intensive care patients. Renal replacement therapy (RRT) has to be initiated in 10–15%. The early in-hospital mortality is about 50%. Up to 20% of all survivors develop chronic kidney disease after intensive care discharge and progress to end-stage kidney disease within the next 10 years. For timely initiation of prophylactic or therapeutic interventions, it is crucial to exactly determine the actual kidney function, i. e., glomerular filtration rate (GFR), and to gain insight into the further development of kidney function. Traditionally, renal function has been estimated using serum levels of creatinine or urea. Unfortunately, both are notoriously unreliable and insensitive in intensive care patients. Cystatin C has fewer non-GFR determinants when compared to creatinine and is more sensitive and accurate to detect early decreases of GFR. At present, new functional tests are discussed, namely the furosemide stress test (FST) and renal functional reserve (RFR). The FST consists of an intravenous infusion of 1.0–1.5 mg/kgBW furosemide to critically ill patients with AKI. An increase in urine output to >100 ml/h is indicative of a GFR >20 ml/min and almost certainly excludes progression to AKI stage III and need for RRT. Estimation of RFR can be made by short-term oral or intravenous administration of a high protein load. A subsequent increase in GFR defines the presence and the magnitude of functional reserve which can be activated. Loss of RFR is an indicator of loss of functioning nephron mass and incomplete recovery following AKI. Both FST and RFR can help to improve diagnosis and care of high-risk patients with acute and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Avila MO, Zanetta DM, Abdulkader RC et al (2017) Urine volume in acute kidney injury: how much is enough? Ren Fail 31:884–890

    Article  Google Scholar 

  2. Barai S, Gambhir S, Prasad N et al (2010) Functional renal reserve capacity in different stages of chronic kidney disease. Nephrology (Carlton) 15:350–353

    Article  Google Scholar 

  3. Chawla LS, Davison DL, Brasha-Mitchell E et al (2013) Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care 17:R207

    Article  Google Scholar 

  4. Delanaye P, Cavalier E, Morel J et al (2014) Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol 15:9

    Article  Google Scholar 

  5. Doig GS, Simpson F, Bellomo R et al (2015) Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med 41:1197–1208

    Article  CAS  Google Scholar 

  6. Ejaz AA, Mohandas R (2014) Are diuretics harmful in the management of acute kidney injury? Curr Opin Nephrol Hypertens 23:155–160

    Article  CAS  Google Scholar 

  7. Herrera-Gutiérrez ME, Seller-Pérez G, Banderas-Bravo E et al (2007) Replacement of 24-h creatinine clearance by 2‑h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med 33:1900–1906

    Article  Google Scholar 

  8. Hoste EAJ, Damen J, Vanholder RC et al (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20:747–753

    Article  CAS  Google Scholar 

  9. Hoste EAJ, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423

    Article  Google Scholar 

  10. Jones CL (2015) Rapid assessment of renal reserve in young adults by cystatin C. Scand J Clin Lab Invest 73:265–268

    Google Scholar 

  11. Koyner JL, Davison DL, Brasha-Mitchell E et al (2015) Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol 26(8):2023–2031. https://doi.org/10.1681/ASN.2014060535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33:278–285

    Article  CAS  Google Scholar 

  13. Outcomes Group (2012) Clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138

    Article  Google Scholar 

  14. Pickkers P, Ostermann M, Joannidis M et al (2017) The intensive care medicine agenda on acute kidney injury. Intensive Care Med 43(9):1198–1209. https://doi.org/10.1007/s00134-017-4687-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ronco C (2016) Acute kidney injury: from clinical to molecular diagnosis. Crit Care 20:201

    Article  Google Scholar 

  16. Ronco C, Chawla LS (2016) Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function. Nephron 134:191–194

    Article  Google Scholar 

  17. Ronco C, Brendolan A, Bragantini L et al (1988) Renal functional reserve in pregnancy. Nephrol Dial Transplant 3:157–161

    Article  CAS  Google Scholar 

  18. Sibert BI, Ho KM, Power BM et al (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65:283–293

    Article  Google Scholar 

  19. Silbert BI, Ho KM, Lipman J et al (2016) Determinants of urinary output response to IV furosemide in acute kidney injury. Crit Care Med 44:e923–e929

    Article  CAS  Google Scholar 

  20. Sime FB, Udy AA, Roberts JA (2015) Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol 24:1–6

    Article  CAS  Google Scholar 

  21. Srisawat N, Sileanu FE, Murugan R et al (2015) Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am J Nephrol 41:81–88

    Article  CAS  Google Scholar 

  22. Stevens LA, Coresh J, Greene T, Levey AS (2006) Assessing kidney function-measured and estimated glomerular filtration rate. N Engl J Med 354:2473–2483

    Article  CAS  Google Scholar 

  23. Udy A, Baptista JP, Lim NL et al (2014) Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med 42:520–527

    Article  CAS  Google Scholar 

  24. Wald R, Quinn RR, Luo J et al (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302:1179–1185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kindgen-Milles.

Ethics declarations

Interessenkonflikt

D. Kindgen-Milles, T. Slowinski und T. Dimski geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kindgen-Milles, D., Slowinski, T. & Dimski, T. Neue Nierenfunktionstests: Renal-funktionelle Reserve und Furosemidstresstest. Med Klin Intensivmed Notfmed 115, 37–42 (2020). https://doi.org/10.1007/s00063-017-0400-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-017-0400-z

Schlüsselwörter

Keywords

Navigation