Skip to main content

Advertisement

Log in

Bioresorbable Vascular Scaffolds in Interventional Neuroradiology

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Bioresorbable vascular scaffolds (BVS) have changed practice patterns in cardiology. These resorbable stents have not yet been utilized in the cerebrovascular circulation. We report the initial experiences with these devices in interventional neuroradiology.

Methods

A retrospective review of clinical presentations, imaging findings and follow-up results of all patients treated using a BVS by our neurovascular team was carried out using hospital electronic charts and the hospital radiographic archive system. Treatment was performed only if patients had a non-tortuous cerebrovascular anatomy suitable for navigation by the bulky BVS.

Results

In this study 9 patients (5 women, mean age 51.3 years) were treated with Absorb or DeSolve scaffolds without permanent morbidity or mortality, 5 had intracranial or vertebral artery stenosis and in 4 patients with cerebral aneurysms scaffold-assisted coiling was performed. At a mean follow-up of 22.3 months, 1 parent artery in the aneurysm group was occluded and the remaining BVSs showed no significant restenosis. Fusiform luminal enlargement was demonstrated in one aneurysm patient. In two patients treated for stenosis, transient intra-arterial filling defects resembling BVS struts (scaffold silhouette) was demonstrated on early follow-up angiograms. In the patient with parent artery occlusion (who was judged to have unjailed the internal carotid bifurcation) and in the patient with luminal remodeling, we were able to discontinue all antiplatelet medications at 3 years without any consequences.

Conclusion

Absorbable stent technology has potential applications in interventional neuroradiology. We suggest that BVS should be optimized for cerebral circulation if prospective studies are to be undertaken for cerebrovascular applications of BVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tenekecioglu E, Farooq V, Bourantas CV, Silva RC, Onuma Y, Yılmaz M, Serruys PW. Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord. 2016;16:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Byrne RA, Kastrati A. Disappearing scaffolds, dissolving expectations. Lancet. 2016;388(10059):2451–2.

    Article  PubMed  Google Scholar 

  3. Wang K, Yuan S, Zhang X, Liu Q, Zhong Q, Zhang R, Lu P, Li J. Biodegradable flow-diverting device for the treatment of intracranial aneurysm: short-term results of a rabbit experiment. Neuroradiology. 2013;55(5):621–8.

    Article  PubMed  Google Scholar 

  4. Schellhammer F, Berlis A, Bloss H, Pagenstecher A, Schumacher M. Poly-lactic-acid coating for endovascular stents. Preliminary results in canine experimental arteriovenous fistulae. Invest Radiol. 1997;32(3):180–6.

    Article  CAS  Google Scholar 

  5. Wang J, An Q, Li D, Wu T, Chen W, Sun B, El-Hamshary H, Al-Deyab SS, Zhu W, Mo X. Heparin and vascular endothelial growth factor loaded poly(L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. J Biomed Nanotechnol. 2015;11(11):1947–60.

    Article  CAS  Google Scholar 

  6. Wang JB, Zhou B, Gu XL, Li MH, Gu BX, Wang W, Li YD. Treatment of a canine carotid artery aneurysm model with a biodegradable nanofiber-covered stent: a prospective pilot study. Neurol India. 2013;61(3):282–7.

    Article  PubMed  Google Scholar 

  7. Aoun RJ, Sattur MG, Panchanathan RS, Bendok BR. The ABSORB III trial: potential new concepts for intracranial atherosclerosis in the post-SAMMPRIS era. Neurosurgery. 2016;78(2):N19–N20.

    Article  PubMed  Google Scholar 

  8. He D, Liu W, Zhang T. The development of carotid stent material. Interv Neurol. 2015;3(2):67–77.

    Article  PubMed  Google Scholar 

  9. Indolfi C, De Rosa S, Colombo A. Bioresorbable vascular scaffolds – basic concepts and clinical outcome. Nat Rev Cardiol. 2016;13(12):719–29.

    Article  CAS  PubMed  Google Scholar 

  10. Kereiakes DJ, Onuma Y, Serruys PW, Stone GW. Bioresorbable vascular scaffolds for coronary revascularization. Circulation. 2016;134(2):168–82.

    Article  CAS  PubMed  Google Scholar 

  11. Deloose K, Bosiers M, Callaert J. TVR Reduction in the SFA. Endovascular today. 2014 October

    Google Scholar 

  12. Strandberg E, Zeltinger J, Schulz DG, Kaluza GL. Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circ Cardiovasc Interv. 2012;5(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  13. Bontinck J, Goverde P, Schroe H, Hendriks J, Maene L, Vermassen F. Treatment of the femoropopliteal artery with the bioresorbable remedy stent. J Vasc Surg. 2016;64(5):1311–9.

    Article  PubMed  Google Scholar 

  14. Kaya T, Daglioglu E, Gurkas E, Akmangit I, Peker A, Belen D, Dede D, Elhan AH, Arat A. Silk device for the treatment of Intracranial aneurysms, part 2: factors related to clinical and angiographic outcome. Turk Neurosurg. 2016;26(4):533–7.

    Article  PubMed  Google Scholar 

  15. Charpentier E, Barna A, Guillevin L, Juliard JM. Fully bioresorbable drug-eluting coronary scaffolds: a review. Arch Cardiovasc Dis. 2015;108(6):385–97.

    Article  PubMed  Google Scholar 

  16. Picard F, L’Allier PL, Tanguay JF. Early multiple coronary micro aneurysms after bioresorbable vascular scaffold implantation. Can J Cardiol. 2016;33(2):292.e9–292.e11.

    Article  Google Scholar 

  17. Cook S, Meier P. Bioresorbable vascular scaffold: promises and the fallen child-as-king? Open Heart. 2016;3(2):e000527.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Collet C, de Winter RJ, Onuma Y, Serruys PW. The Absorb bioresorbable vascular scaffold for the treatment of coronary artery disease. Expert Opin Drug Deliv. 2016;13(10):1489–99.

    Article  CAS  PubMed  Google Scholar 

  19. Mukete BN, van der Heijden LC, Tandjung K, Baydoun H, Yadav K, Saleh QA, Doggen CJ, Abi Rafeh N, Le Jemtel TH, von Birgelen C. Safety and efficacy of everolimus-eluting bioresorbable vascular scaffolds versus durable polymer everolimus-eluting metallic stents assessed at 1‑year follow-up: A systematic review and meta-analysis of studies. Int J Cardiol. 2016;221:1087–94.

    Article  PubMed  Google Scholar 

  20. Serruys PW, Ormiston J, van Geuns RJ, de Bruyne B, Dudek D, Christiansen E, Chevalier B, Smits P, McClean D, Koolen J, Windecker S, Whitbourn R, Meredith I, Wasungu L, Ediebah D, Veldhof S, Onuma Y. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis: 5‑year follow-up. J Am Coll Cardiol. 2016;67(7):766–76.

    Article  CAS  PubMed  Google Scholar 

  21. Giordano A, Messina S, Biondi-Zoccai G. Successful treatment of a subclavian artery stenosis with a coronary bioresorbable vascular scaffold. J Endovasc Ther. 2016;23(4):653–6.

    Article  PubMed  Google Scholar 

  22. Giordano A, Ferraro P, Corcione N, Messina S, Maresca G, Coscioni E, Biondi-Zoccai G. Successful treatment of recurrent carotid in-stent restenosis and drug-eluting balloon failure with a coronary bioresorbable vascular scaffold: a case report. Int J Surg Case Rep. 2016;21:78–82.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park JB, Bronzino JD. Biomaterials: principles and applications. Boca Raton: CRC Press; 2002.

    Book  Google Scholar 

  24. Wang Y. New biomaterials derived from poly (lactic acids): novel approaches to combine biodegradation, x‑ray contrast and controlled local drug release. Maastricht: Maastricht University; 2015.

    Google Scholar 

  25. McDougall CG, Johnston SC, Gholkar A, Barnwell SL, Vazquez Suarez JC, Massó Romero J, Chaloupka JC, Bonafe A, Wakhloo AK, Tampieri D, Dowd CF, Fox AJ, Imm SJ, Carroll K, Turk AS; MAPS Investigators. Bioactive versus bare platinum coils in the treatment of intracranial aneurysms: the MAPS (Matrix and Platinum Science) trial. AJNR Am J Neuroradiol. 2014;35(5):935–42.

    Article  PubMed  Google Scholar 

  26. Molyneux AJ, Clarke A, Sneade M, Mehta Z, Coley S, Roy D, Kallmes DF, Fox AJ. Cerecyte coil trial: angiographic outcomes of a prospective randomized trial comparing endovascular coiling of cerebral aneurysms with either cerecyte or bare platinum coils. Stroke. 2012;43(10):2544–50.

    Article  CAS  PubMed  Google Scholar 

  27. Cuellar H, Guimaraens L, Ambekar S, Vivas E, Theron J. Angioseal as a hemostatic device for direct carotid puncture during endovascular procedures. Interv Neuroradiol. 2015;21(2):273–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gasbarro V, Traina L, Mascoli F, Coscia V, Buffone G, Grande R, Fugetto F, Butrico L, de Franciscis S, Serra R. Absorbable suture material in carotid surgery. Vasa. 2015;44(6):451–7.

    Article  PubMed  Google Scholar 

  29. Levy EI, Hanel RA, Howington JU, Nemes B, Boulos AS, Tio FO, Paciorek AM, Amlani S, Kagan-Hallett KS, Fronckowiak MD, Guterman LR, Hopkins LN. Sirolimus-eluting stents in the canine cerebral vasculature: a prospective, randomized, blinded assessment of safety and vessel response. J Neurosurg. 2004;100(4):688–94.

    Article  CAS  PubMed  Google Scholar 

  30. Levy EI, Hanel RA, Tio FO, Garlick DS, Bailey L, Cunningham MR, Williard C, Sherman D, Dooley JF, Kopia GA. Safety and pharmacokinetics of sirolimus-eluting stents in the canine cerebral vasculature: 180 day assessment. Neurosurgery. 2006;59(4):925–33, discussion 933–4.

    Article  PubMed  Google Scholar 

  31. Arat A, Diaz O, Strother C, Klucznik R. Comparison of drug eluting-balloon expandable and self expandable stents for stenting of intracranial atherosclerosis. Interv Neuroradiol. 2009;15(Suppl 1):97.

    Google Scholar 

  32. Gupta R, Al-Ali F, Thomas AJ, Horowitz MB, Barrow T, Vora NA, Uchino K, Hammer MD, Wechsler LR, Jovin TG. Safety, feasibility, and short-term follow-up of drug-eluting stent placement in the intracranial and extracranial circulation. Stroke. 2006;37(10):2562–6.

    Article  CAS  PubMed  Google Scholar 

  33. Park S, Lee DG, Chung WJ, Lee DH, Suh DC. Long-term outcomes of drug-eluting stents in symptomatic Intracranial stenosis. Neurointervention. 2013;8(1):9–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Natarajan SK, Ogilvy CS, Hopkins LN, Siddiqui AH, Levy EI. Initial experience with an everolimus-eluting, second-generation drug-eluting stent for treatment of intracranial atherosclerosis. J Neurointerv Surg. 2010;2(2):104–9.

    Article  PubMed  Google Scholar 

  35. Costa JR Jr, Abizaid A, Feres F, Costa R, Seixas AC, Maia F, Abizaid A, Tanajura LF, Staico R, Siqueira D, Meredith L, Bhat V, Yan J, Ormiston J, Sousa AG, Fitzgerald P, Sousa JE. Excella First-in-Man (FIM) study: safety and efficacy of novolimus-eluting stent in de novo coronary lesions. EuroIntervention. 2008;4(1):53–8.

    Article  Google Scholar 

  36. Zhang F, Qian J, Dong L, Ge J. Coronary aneurysm formation following biodegradable polymer drug-eluting stent implantation. Int J Cardiol. 2012;160(1):e8–e9.

    Article  PubMed  Google Scholar 

  37. Karanasos A, Garcia-Garcia HM, van Geuns RJ, Regar E. Fate of side-branch jailing and a malapposed platinum marker after resorption of an everolimus-eluting bioresorbable vascular scaffold: serial optical coherence tomography observations. JACC Cardiovasc Interv. 2015;8(3):e53–e4.

    Article  PubMed  Google Scholar 

  38. Abizaid A, Ribamar Costa J Jr, Bartorelli AL, Whitbourn R, van Geuns RJ, Chevalier B, Patel T, Seth A, Stuteville M, Dorange C, Cheong WF, Sudhir K, Serruys PW; ABSORB EXTEND investigators. The absorb extend study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention. 2015;10(12):1396–401.

    Article  PubMed  Google Scholar 

  39. Lafont A, Durand E. A.R.T.: concept of a bioresorbable stent without drug elution. EuroIntervention. 2009;5(Suppl F):F83–F7.

    Article  PubMed  Google Scholar 

  40. Butteriss D, Gholkar A, Mitra D, Birchall D, Jayakrishnan V. Single-center experience of cerecyte coils in the treatment of intracranial aneurysms: initial experience and early follow-up results. AJNR Am J Neuroradiol. 2008;29(1):53–6.

    Article  CAS  PubMed  Google Scholar 

  41. Ramot Y, Haim-Zada M, Domb AJ, Nyska A. Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev. 2016;107:153–62.

    Article  CAS  PubMed  Google Scholar 

  42. Collet C, Serruys PW. Polymer biodegradation kinetics: Do they matter? J Am Coll Cardiol. 2016;67(19):2259–62.

    Article  PubMed  Google Scholar 

  43. Rudolph A, Teske M, Illner S, Kiefel V, Sternberg K, Grabow N, Wree A, Hovakimyan M. Surface modification of biodegradable polymers towards better biocompatibility and lower thrombogenicity. PLoS One. 2015;10(12):e0142075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kono K, Terada T. Feasibility of insertion of a microcatheter through a Y-stent in coil embolization of cerebral aneurysms and its detailed geometry by micro-computed tomography. Acta Neurochir (Wien). 2014;156(1):39–43.

    Article  Google Scholar 

  45. Topcuoglu OM, Akgul E, Daglioglu E, Topcuoglu ED, Peker A, Akmangit I, Belen D, Arat A. Flow diversion in middle cerebral artery aneurysms: Is it really an all-purpose treatment? World Neurosurg. 2016;87:317–27.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Arat.

Ethics declarations

Conflict of interests

A. Arat, E. Daglioglu, I. Akmangit, A. Peker, M. Arsava, M.A. Topcuoglu and D. Belen declare that they have no competing interests.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arat, A., Daglioglu, E., Akmangit, I. et al. Bioresorbable Vascular Scaffolds in Interventional Neuroradiology. Clin Neuroradiol 28, 585–592 (2018). https://doi.org/10.1007/s00062-017-0609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0609-5

Keywords

Navigation