Skip to main content

Advertisement

Log in

Longitudinal Volume Quantification of Deep Medullary Veins in Patients with Cerebral Venous Sinus Thrombosis

Venous Volume Assessment in Cerebral Venous Sinus Thrombosis Using SWI

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Susceptibility-weighted imaging (SWI) visualizes small cerebral veins with high sensitivity and could, thus, enable quantification of hemodynamics of deep medullary veins. We aimed to evaluate volume changes of deep medullary veins in patients with acute cerebral venous sinus thrombosis (CVST) over time in comparison to healthy controls.

Methods

All magnetic resonance imaging (MRI) experiments were executed at 3 T using a 32-channel head coil. Based on SWI and semiautomatic postprocessing (statistical parametric mapping [SPM8] and ANTs), the volume of deep medullary veins was quantified in 14 patients with acute CVST at baseline and the 6‑month follow-up, as well as in 13 healthy controls undergoing repeated MRI examination with an interscan interval of at least 1 month.

Results

Deep medullary venous volume change over time was significantly different between healthy controls and patient groups (p < 0.001). Patients with superior sagittal sinus thrombosis (SSST) showed a significant decline from baseline to follow-up measurements (9.8 ± 4.9 ml versus 7.5 ± 4.2 ml; p = 0.02), whereas in patients with transverse sinus thrombosis (TST) and healthy controls no significant volume changes were observable.

Conclusions

Venous volume quantification was feasible and reproducible both in healthy volunteers and in patients. The decrease of venous volume in patients over time represents improvement of venous drainage, reduction of congestion, and normalization of microcirculation due to treatment. Thus, quantification of venous microcirculation could be valuable for estimation of prognosis and guidance of CVST therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204:272–7.

    Article  CAS  Google Scholar 

  2. Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22:439–50.

    Article  Google Scholar 

  3. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87:9868–72.

    Article  CAS  Google Scholar 

  4. Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke. 2004;35:1989–94.

    Article  Google Scholar 

  5. Mahvash M, Pechlivanis I, Charalampaki P, Jansen O, Mehdorn HM. Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation. Clin Neurol Neurosurg. 2014;124:151–5.

    Article  Google Scholar 

  6. Xia X, Tan C. A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. J Neuroradiol. 2013;40:355–9.

    Article  Google Scholar 

  7. Bousser M, Ferro JM. Cerebral venous thrombosis: An update. Lancet Neurol. 2007;6:162–70.

    Article  CAS  Google Scholar 

  8. Coutinho JM, Zuurbier SM, Stam J. Declining mortality in cerebral venous thrombosis: a systematic review. Stroke. 2014;45:1338–41.

    Article  Google Scholar 

  9. Canhão P, Ferro JM, Lindgren AG, Bousser M, Stam J, Barinagarrementeria F. Causes and predictors of death in cerebral venous thrombosis. Stroke. 2005;36:1720–5.

    Article  Google Scholar 

  10. Agid R, Shelef I, Scott JN, Farb RI. Imaging of the intracranial venous system. Neurologist. 2008;14:12–22.

    Article  Google Scholar 

  11. Idbaih A, Boukobza M, Crassard I, Porcher R, Bousser M, Chabriat H. MRI of clot in cerebral venous thrombosis: high diagnostic value of susceptibility-weighted images. Stroke. 2006;37:991–5.

    Article  Google Scholar 

  12. Kawabori M, Kuroda S, Kudo K, Terae S, Kaneda M, Nakayama N, Iwasaki Y. Susceptibility-weighted magnetic resonance imaging detects impaired cerebral hemodynamics in the superior sagittal sinus thrombosis – case report. Neurol Med Chir (Tokyo). 2009;49:248–51.

    Article  Google Scholar 

  13. Selim M, Fink J, Linfante I, Kumar S, Schlaug G, Caplan LR. Diagnosis of cerebral venous thrombosis with echo-planar T2*-weighted magnetic resonance imaging. Arch Neurol. 2002;59:1021.

    Article  Google Scholar 

  14. Egger K, Dempfle AK, Yang S, Schwarzwald R, Harloff A, Urbach H. Reliability of cerebral vein volume quantification based on susceptibility-weighted imaging. Neuroradiology. 2016;58(9):937–42.

    Article  CAS  Google Scholar 

  15. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29:1310–20.

    Article  Google Scholar 

  16. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–44.

    Article  Google Scholar 

  17. Yushkevich PA, Avants BB, Das SR, Pluta J, Altinay M, Craige C. Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: an illustration in ADNI 3 T MRI data. Neuroimage. 2010;50:434–45.

    Article  Google Scholar 

  18. Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: a robust approach. Neuroimage. 2010;53:1181–96.

    Article  Google Scholar 

  19. Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage. 2011;57:19–21.

    Article  Google Scholar 

  20. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal. 2008;12:26–41.

    Article  CAS  Google Scholar 

  21. R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.

    Google Scholar 

  22. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article  Google Scholar 

  23. Nowinski WL, Puspitasari F, Volkau I, Orrison WW, Knopp MV. Quantification of the human cerebrovasculature: a 7T and 320-row CT in vivo study. J Comput Assist Tomogr. 2013;37:117–22.

    Article  Google Scholar 

  24. Nowinski WL, Chua BC, Marchenko Y, Puspitsari F, Volkau I, Knopp MV. Three-dimensional reference and stereotactic atlas of human cerebrovasculature from 7T. Neuroimage. 2011;55:986–98.

    Article  CAS  Google Scholar 

  25. Einhäupl K, Stam J, Bousser M, De Bruijn SFTM, Ferro JM, Martinelli I, Masuhr F. EFNS guideline on the treatment of cerebral venous and sinus thrombosis in adult patients. Eur J Neurol. 2010;17:1229–35.

    Article  Google Scholar 

  26. Herweh C, Griebe M, Geisbüsch C, Szabo K, Neumaier-Probst E, Hennerici MG, Bendszus M, Ringleb PA, Nagel S. Frequency and temporal profile of recanalization after cerebral vein and sinus thrombosis. Eur J Neurol. 2016;23:681–7.

    Article  CAS  Google Scholar 

  27. Baumgartner RW. Recanalisation of cerebral venous thrombosis. J Neurol Neurosurg Psychiatry. 2003;74:459–61.

    Article  CAS  Google Scholar 

  28. Bauerle J, Egger K, Harloff A. Idiopathische intrakranielle Hypertension. Nervenarzt. 2017;88:191–200.

    Article  CAS  Google Scholar 

  29. Ferro JM, Canhão P, Stam J, Bousser M, Barinagarrementeria F. Prognosis of cerebral vein and dural sinus thrombosis: results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke. 2004;35:664–70.

    Article  Google Scholar 

  30. Stolz E, Kaps M, Kern A, Babacan SS, Dorndorf W. Transcranial color-coded duplex sonography of intracranial veins and sinuses in adults. Reference data from 130 volunteers. Stroke. 1999;30:1070–5.

    Article  CAS  Google Scholar 

  31. Valdueza JM, Schmierer K, Mehraein S, Einhaupl KM. Assessment of normal flow velocity in basal cerebral veins: a transcranial doppler ultrasound study. Stroke. 1996;27:1221–5.

    Article  CAS  Google Scholar 

  32. Tong KA, Ashwal S, Obenaus A, Nickerson JP, Kido D, Haacke EM. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol. 2008;29:9–17.

    Article  CAS  Google Scholar 

  33. Schaller B. Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev. 2004;46:243–60.

    Article  CAS  Google Scholar 

  34. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30:232–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hansjörg Mast for performing MRI examinations.

Funding

Prof. Dr. A. Harloff has received funding from Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany, grant #HA5399/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Schuchardt.

Ethics declarations

Conflict of interest

A. K. Dempfle, A. Harloff, F. Schuchardt, J. Bäuerle, S. Yang, H. Urbach and K. Egger declare that they have no competing interests.

Additional information

A. K. Dempfle and A. Harloff contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dempfle, A.K., Harloff, A., Schuchardt, F. et al. Longitudinal Volume Quantification of Deep Medullary Veins in Patients with Cerebral Venous Sinus Thrombosis. Clin Neuroradiol 28, 493–499 (2018). https://doi.org/10.1007/s00062-017-0602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-017-0602-z

Keywords

Navigation