Skip to main content
Log in

Renale Denervierung

Atueller Stand und Perspektiven

Renal denervation

Current state and future perspectives

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die optimale Therapie der arteriellen Hypertonie bleibt trotz einer Vielzahl zur Verfügung stehender Medikamente eine große Herausforderung, und der Zielwert wird bei vielen Patienten nicht erreicht, obwohl der Zusammenhang zwischen Bluthochdruck und kardiovaskulären Ereignissen heutzutage unumstritten ist. Die Gründe für das mangelnde Erreichen des Zielblutdrucks sind vielfältig und beinhalten Compliance-Probleme und Medikamentennebenwirkungen, aber auch die Therapierefraktärität. Bei der therapierefraktären arteriellen Hypertonie hat das Ungleichgewicht des vegetativen Nervensystems zugunsten des Sympathikus eine übergeordnete Bedeutung. Die Notwendigkeit, Menschen mit einer therapierefraktären arteriellen Hypertonie adäquat behandeln zu können, und das Wissen, durch eine Reduzierung der Sympathikusaktivität auch eine Reduzierung des Blutdrucks zu erreichen, haben zur Entwicklung der katheterbasierten renalen Sympathikusdenervation (kurz: „renale Denervierung“) geführt. Dabei werden katheterbasiert sympathische Nervenfasern entlang der Nierenarterien abladiert. Die Resultate der bekanntesten Studien – Symplicity HTN-1 und HTN-2 – haben das Interesse der katheterbasierten renalen Denervierung zur Behandlung der therapierefraktären arteriellen Hypertonie bei Ärzten und auch bei Patienten weltweit geweckt. Durch Reduzierung der Sympathikusaktivität konnten neben der Blutdruckreduktion auch zusätzlich potenzielle positive Effekte auf den Glukosestoffwechsel, das Schlafapnoe-Syndrom sowie die Herz- und Niereninsuffizienz gezeigt werden. Diese Erkenntnisse haben dazu geführt, dass in kürzester Zeit eine Vielzahl neuer Systeme zur renalen Denervierung entwickelt wurden. Inwieweit die katheterbasierte renale Ablationstherapie dauerhaft zur Therapie der therapierefraktären Hypertonie eingesetzt werden kann, welche weiteren Indikationen sich hierfür ergeben und welche Ergebnisse mit den neueren Kathetersystemen erzielt werden, muss durch größere Studien und Langzeitergebnisse bestätigt bzw. geprüft werden.

Abstract

Hypertension is a well-known risk factor for major cardiovascular events. Despite advances in medical therapy, sufficient treatment of hypertension remains unsatisfying in a substantial number of patients and is therefore one of the main challenges in modern medicine. In Germany 5–15 % of patients with hypertension suffer from resistant hypertension with elevated blood pressure despite the use of at least three antihypertensive drugs. Additionally patients often suffer from side effects. In patients with resistant hypertension the important role of the sympathetic nervous system with increased sympathetic activity is well known. In the past surgical sympathectomy with extended removal of sympathetic ganglia was performed to reduce blood pressure in patients with malignant hypertension. The positive effect of this highly invasive procedure on blood pressure led to the development of new strategies for the treatment of uncontrolled hypertension. One of the novel procedures includes catheter-based renal sympathetic denervation. The most common system is the radiofrequency ablation catheter (Symplicity®, Medtronic, Minneapolis, USA) which ablates the nerve fibers in the adventitia of the renal arteries by using high-frequency energy. As the results of the Symplicity trials (HTN-1 and HTN-2) showed significant reduction of systolic and diastolic blood pressure after renal denervation there is growing interest in this novel procedure. Moreover, by reducing the sympathetic activity after renal denervation early results indicate a positive impact on glucose metabolism, sleep apnea syndrome, as well as heart and renal failure. These effects led to the development of many different devices for renal denervation; however, trials with a higher number of patients and longer follow-up need to confirm these initially promising results and the value of newer devices. Until then renal denervation should not be regarded as standard therapy for arterial hypertension or an alternative to medical antihypertensive treatment and should be reserved for selected patients with resistant hypertension and specialized medical centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Erbel R, Lehmann N, Möhlenkamp S et al (2012) Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension 59:44–53

    Article  PubMed  CAS  Google Scholar 

  2. Löwel H, Meisinger C, Heier M et al (2006) Epidemiologie der arteriellen Hypertonie in Deutschland. Dtsch Med Wochenschr 131:2586–2591

    Article  PubMed  Google Scholar 

  3. Wolf-Maier K, Cooper RS, Kramer H et al (2004) Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 43:10–17

    Article  PubMed  CAS  Google Scholar 

  4. Calhoun DA, Jones D, Textor S et al (2008) Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation 117:510–526

    Article  Google Scholar 

  5. Persell SD (2011) Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension 57:1076–080

    Article  PubMed  CAS  Google Scholar 

  6. Sierra A de la, Segura J, Banegas JR et al (2011) Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension 57:898–902

    Article  PubMed  Google Scholar 

  7. DiBona GFS (2002) Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens 11:197–200

    Article  PubMed  Google Scholar 

  8. Deutsche Hochdruckliga e. V. – DHL (2009) Leitlinien zur Behandlung der arteriellen Hypertonie. Nieren- und Hochdruckkrankheiten 38:137–188

  9. Mahfoud F, Vonend O, Bruck H et al (2011) Expert consensus statement on interventional renal sympathetic denervation for hypertension treatment. Dtsch Med Wochenschr 136:2418–2424

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein DS (1983) Plasma catecholamines and essential hypertension: an analytical review. Hypertension 5:86–99

    Article  PubMed  CAS  Google Scholar 

  11. Smith PA, Graham LN, Mackintosh AF et al (2004) Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 17:217–222

    Article  PubMed  Google Scholar 

  12. Grimson KS (1941) Total thoracic and partial to total lumbar sympathectomy and celiac ganglionectomy in the treatment of hypertension. Ann Surg 114:753–775

    PubMed  CAS  Google Scholar 

  13. Peet M, Woods W, Braden S (1940) The surgical treatment of hypertension: results in 350 consecutive cases treated by bilateral supradiaphragmatic splanchnicectomy and lower dorsal sympathetic gangliectomy. Clinical lecture at New York session. JAMA 115:1875–1885

    Article  Google Scholar 

  14. Smithwick RH (1948) Surgery in hypertension. Lancet 2:65

    PubMed  CAS  Google Scholar 

  15. Grimson KS, Orgain ES, Anderson B et al (1949) Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg 129:850–871

    Article  Google Scholar 

  16. Whitelaw GP, Kinsey D, Smithwick RH (1964) Factors influencing the choice of treatment in essential hypertension: surgical, medical, or a combination of both. Am J Surg 107:220–231

    Article  PubMed  CAS  Google Scholar 

  17. Converse RL Jr, Jacobsen TN, Toto RD et al (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327:1912–1918

    Article  PubMed  Google Scholar 

  18. Hausberg M, Kosch M, Harmelink P et al (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106:1974–1979

    Article  PubMed  Google Scholar 

  19. Osborn JL, Holdaas H, Thames MD, DiBona GF (1983) Renal adrenoceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog. Circ Res 53:298–305

    Article  PubMed  CAS  Google Scholar 

  20. Hopf HB, Schlaghecke R, Peters J (1994) Sympathetic neural blockade by thoracic epidural anesthesia suppresses renin release in response to arterial hypotension. Anesthesiology 80:992–999

    Article  PubMed  CAS  Google Scholar 

  21. Ye S, Zhong H, Yanamadala V, Campese VM (2002) Renal injury caused by intrarenal injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens 15:717–724

    Article  PubMed  CAS  Google Scholar 

  22. Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281

    Article  PubMed  Google Scholar 

  23. Schlaich MP, Sobotka PA, Krum H et al (2009) Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med 361:932–934

    Article  PubMed  CAS  Google Scholar 

  24. Symplicity HTN-1 Investigators (2011) Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension 57:911–917

    Article  Google Scholar 

  25. Ganguly A (1998) Primary aldosteronism. N Engl J Med 339:1828–1834

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan NM (2001) Cautions over the current epidemic of primary aldosteronism. Lancet 357:953–954

    Article  PubMed  CAS  Google Scholar 

  27. Ukena C, Mahfoud F, Kindermann I et al (2011) Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol 58:1176–1182

    Article  PubMed  Google Scholar 

  28. Redfield MM, Jacobsen SJ, Burnett JC Jr et al (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202

    Article  PubMed  Google Scholar 

  29. Bombelli M, Facchetti R, Carugo S et al (2009) Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of office blood pressure values. J Hypertens 27:2458–2464

    Article  PubMed  CAS  Google Scholar 

  30. Okin PM, Devereux RB, Jern S et al (2004) Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA 292:2343–2349

    Article  PubMed  CAS  Google Scholar 

  31. De Caterina AR, Leone AM (2010) Why beta-blockers should not be used as first choice in uncomplicated hypertension. Am J Cardiol 105:1433–1438

    Article  Google Scholar 

  32. Di Bona GF (2005) Physiology in perspective: the wisdom of the body: neural control of the kidney. Am J Physiol Regul Integr Comp Physiol 289:633–641

    Article  Google Scholar 

  33. Vollenweider P, Tappy L, Randin D et al (1993) Differential effects of hyperinsulinemia and carbohydrate metabolism on sympathetic nerve activity and muscle blood flow in humans. J Clin Invest 92:147–154

    Article  PubMed  CAS  Google Scholar 

  34. Huggett RJ, Scott EM, Gilbey SG, Stoker JB (2003) Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 108:3097–3101

    Article  PubMed  CAS  Google Scholar 

  35. Julius S, Gudbrandsson T, Jamerson K et al (1991) The hemodynamic link between insulin resistance and hypertension. J Hypertens 9:983–986

    Article  PubMed  CAS  Google Scholar 

  36. Koistinen HA, Zierath JR (2002) Regulation of glucose transport in human skeletal muscle. Ann Med 34:410–418

    Article  PubMed  CAS  Google Scholar 

  37. Mancia G, Bousquet P, Elghozi JL et al (2007) The sympathetic nervous system and the metabolic syndrome. J Hypertens 25:909–920

    Article  PubMed  CAS  Google Scholar 

  38. Julius S, Gudbrandsson T, Jamerson K (1992) The interconnection between sympathetics, microcirculation, and insulin resistance in hypertension. Blood Press 1:9–19

    Article  PubMed  CAS  Google Scholar 

  39. Mahfoud F, Schlaich M, Kindermann I et al (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123:1940–1946

    Article  PubMed  CAS  Google Scholar 

  40. Witkowski A, Prejbisz A, Florczak E et al (2011) Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58:559–565

    Article  PubMed  CAS  Google Scholar 

  41. Ukena C, Bauer A, Mahfoud F et al (2012) Renal sympathetic denervation for treatment of electrical storm: first-in-man experience. Clin Res Cardiol 101:63–67

    Article  PubMed  Google Scholar 

  42. Cohn JN, Levine TB, Olivari MT (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823

    Article  PubMed  CAS  Google Scholar 

  43. Foody JM, Farrell MH, Krumholz HM (2002) Beta-blocker therapy in heart failure: scientific review. JAMA 287:883–889

    Article  PubMed  CAS  Google Scholar 

  44. Johansson M, Elam M, Rundqvist B et al (1999) Increased sympathetic nerve activity in renovascular hypertension. Circulation 99:2537–2542

    Article  PubMed  CAS  Google Scholar 

  45. Rafiq K, Noma T, Fujisawa Y et al (2012) Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation. Circulation 125:1402–1413

    Article  PubMed  CAS  Google Scholar 

  46. Esler M, Dudley F, Jennings G, Debinski H (1992) Increased sympathetic nervous activity and the effects of its inhibition with clonidine in alcoholic cirrhosis. Ann Intern Med 116:446–455

    PubMed  CAS  Google Scholar 

  47. Esler MD, Krum H, Sobotka PA et al (2010) Renal sympathetic denervation in patients with treatment resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet 376:1903–1909

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

H. Bruck u. T. Konorza waren Site Principal Investigators der Simplicity-HTN2-Studie, die von der Firma Adrian Inc., USA, gesponsert wurde. P. Kahlert ist Clinical Proctor für Edwards Lifesciences Inc. Der korrespondierende Autor gibt für sich und die weiteren Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kara, K., Bruck, H., Kahlert, P. et al. Renale Denervierung. Herz 37, 746–753 (2012). https://doi.org/10.1007/s00059-012-3689-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3689-7

Schlüsselwörter

Keywords

Navigation