Skip to main content
Log in

Molekulare Mechanismen von Vorhofflimmern

Potenzielle Rolle der microRNAs als neues therapeutisches Ziel und als möglicher Biomarker

Molecular mechanisms of atrial fibrillation

Potential role of microRNAs as new therapeutic targets and potential biomarkers

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Vorhofflimmern ist die häufigste klinische Arrhythmie, und die aktuell verfügbaren Therapien sind immer noch nicht wirklich zufriedenstellend. Die Entschlüsselung der molekularen Mechanismen soll dazu beitragen, neue Therapien zu entwickeln. Die Forschung auf dem Gebiet der microRNAs ist in den letzten Jahren in das Zentrum der kardiovaskulären Forschung gerückt. Dieser Artikel gibt eine Übersicht über die neusten Erkenntnisse bezüglich der Rolle der microRNA bei Vorhofflimmern und atrialen Remodellingprozessen sowie eine kurzen Ausblick auf die mögliche klinische Perspektive im Hinblick auf neue Therapieansätze und die potenzielle Rolle als Biomarker.

Abstract

Atrial fibrillation represents the most common form of clinical arrhythmia in daily routine. However, current therapeutic options are still limited and a better understanding of the underlying molecular mechanisms is expected to contribute to the development of new therapeutic strategies. The scientific field of microRNA research has received a lot of attention in recent years, especially regarding cardiovascular research. This article gives a brief overview of the most recent developments in microRNA research in the field of atrial fibrillation and atrial remodelling processes. Furthermore, the clinical perspective of microRNAs as new therapeutic targets and as potential biomarkers is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Breithardt G, Dobrev D, Doll N et al (2008) The German Competence Network on Atrial Fibrillation (AFNET). Herz 33(8):548–555

    Article  PubMed  Google Scholar 

  2. Willems S, Hoffmann B, Steven D et al (2008) Catheter ablation for atrial fibrillation: clinically established or still an experimental method? Herz 33(6):402–411

    Article  PubMed  Google Scholar 

  3. Sinner MF, Ellinor PT, Meitinger T et al (2011) Genome-wide association studies of atrial fibrillation: past, present, and future. Cardiovasc Res 89:701–709

    Article  PubMed  CAS  Google Scholar 

  4. Wang Z, Lu Y, Yang B (2011) MicroRNAs and atrial fibrillation: new fundamentals. Cardiovasc Res 89:710–721

    Article  PubMed  CAS  Google Scholar 

  5. Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684

    Article  PubMed  CAS  Google Scholar 

  6. Sinner M, Clauss S, Wakili R et al (2011) Recent advances in the genetics of atrial fibrillation: from rare and common genetic variants to microRNA signaling. Cardiogenetics 1(s1):e7

    Article  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  8. Wakili R, Voigt N, Kaab S et al (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121:2955–2968

    Article  PubMed  CAS  Google Scholar 

  9. Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124(20):2264–2274

    Article  PubMed  CAS  Google Scholar 

  10. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  11. Nattel S, Burstein B, Dobrev D (2008) Atrial remodelling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol 1(1):62–73

    Article  PubMed  Google Scholar 

  12. Voigt N, Trafford A, Wehrens X et al (2011) Mechanisms underlying delayed afterdepolarisations and triggered activity in human atrial fibrillation. Circulation 124:A13977

    Google Scholar 

  13. Wakili R, Qi X, Harada M et al (2011) Arrhythmogenic role and underlying mechanisms of atrial triggered activity induced by experimental heart failure. Heart Rhythm 8(5S):PO1–06,S104

    Google Scholar 

  14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 92(7):1954–1968

    PubMed  CAS  Google Scholar 

  15. Burstein B, Comtois P, Michael G et al (2009) Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res 105(12):1213–1222

    Article  PubMed  CAS  Google Scholar 

  16. Burstein B, Nattel S (2008) Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51(8):802–809

    Article  PubMed  CAS  Google Scholar 

  17. Akoum N, Daccarett M, McGann C et al (2011) Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation: a DE-MRI guided approach. J Cardiovasc Electrophysiol 22(1): 16–22

    Article  PubMed  Google Scholar 

  18. Verma A, Wazni OM, Marrouche NF et al (2005) Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure. J Am Coll Cardiol 45(2):285–292

    Article  PubMed  Google Scholar 

  19. Yang B, Lin H, Xiao J et al (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13:486–491

    Article  PubMed  CAS  Google Scholar 

  20. Girmatsion Z, Biliczki P, Bonauer A et al (2009) Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart Rhythm 6:1802–1809

    Article  PubMed  Google Scholar 

  21. Terentyev D, Belevych AE, Terentyeva R et al (2009) miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104:514–521

    Article  PubMed  CAS  Google Scholar 

  22. Lu Y, Zhang Y, Wang N et al (2010) MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–2387

    Article  PubMed  CAS  Google Scholar 

  23. Shan H, Zhang Y, Lu Y et al (2009) Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 83:465–472

    Article  PubMed  CAS  Google Scholar 

  24. Duisters RF, Tijsen AJ, Schroen B et al (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178, (6p following 178)

    Article  PubMed  CAS  Google Scholar 

  25. Chen Y, Wakili R, Luo X et al (2010) MicroRNA changes and atrial arrhythmogenic remodeling in tachycardiomyopathic heart failure. Circulation 122:A12988

    Google Scholar 

  26. Wakili R, Dawson K, Ordog B et al (2011) MicroRNA 29b – a mechanistic contributor and biomarker in atrial fibrillation. Heart Rhythm 8(5S):PO3–102,S255

    Google Scholar 

  27. Adam O, Löhfelm B, Thum T et al (2011) Bedeutung der microRNA-21 bei atrialer Fibrose und Vorhofflimmern. Clin Res Cardiol 100(Suppl 1):V152

    Google Scholar 

  28. Thum T (2012) MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 4(1):3–14

    Article  PubMed  CAS  Google Scholar 

  29. Zhong X, Chung AC, Chen HY et al (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22(9):1668–1681

    Article  PubMed  CAS  Google Scholar 

  30. Fang YX, Xue JL, Shen Q et al (2012) miR-7 inhibits tumor growth and metastasis by targeting the PI3K/AKT pathway in hepatocellular carcinoma. Hepatology: doi: 10.1002/hep.25576 [Epub ahead of print]

  31. Tijsen AJ, Creemers EE, Moerland PD et al (2010) miR423–5p as a circulating biomarker for heart failure. Circ Res 106(6):1035–1039

    Article  PubMed  CAS  Google Scholar 

  32. Mínguez B, Lachenmayer A (2011) Diagnostic and prognostic molecular markers in hepatocellular carcinoma. Dis Markers 31(3):181–190

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wakili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakili, R., Clauß, S. & Kääb, S. Molekulare Mechanismen von Vorhofflimmern. Herz 37, 166–171 (2012). https://doi.org/10.1007/s00059-012-3594-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3594-0

Schlüsselwörter

Keywords

Navigation