Skip to main content
Log in

Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction

Vergleich des Kraftverlustes aufgrund von Friktion verschiedener Bogendimensionen und -materialien in konventionellen und neuen selbstligierenden Brackets während der simulierten Eckzahnretraktion

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aims

The aim of this study was to compare force loss due to friction (Fr) during simulated canine retraction using different archwire dimensions and materials between conventional and new self-ligating brackets.

Methods

The tested brackets were (1) conventional brackets (Victory series, GAC twin and FLI twin), (2) self-ligating brackets (Damon-Q, FLI-SL, new/improved FLI-SL (I FLI-SL), SPEED, GAC innovation (R) and Ortho Classic) and (3) a low-friction bracket (Synergy). All brackets had a 0.022″ slot size. The tested archwires were stainless steel (0.018″; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″); nickel titanium (NiTi; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″) and titanium molybdenum alloy (TMA; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ and 0.019″x0.025″). Canine retraction was experimentally simulated in a biomechanical set-up using a NiTi coil spring that delivered a force of 1 N. The simulated retraction path was up to 4 mm. Force loss due to friction was compared between groups using the Welch t‑test.

Results

Force loss due to friction increased with increasing archwire size. Also, TMA showed the highest and stainless steel the lowest force loss due to friction. FLI-SL brackets showed the lowest Fr (31%) and Ortho Classic showed the highest (67%).

Conclusions

Increasing wire size generally showed increasing force loss due to friction. FLI-SL brackets showed the lowest, while Ortho Classic showed the highest friction.

Zusammenfassung

Ziele

Ziel der vorliegenden Studie war der Vergleich des Kraftverlustes durch Friktion (Fr) im Zuge der simulierten Eckzahnretraktion. Dabei kamen unterschiedliche Bogendimensionen und -materialien sowie konventionelle und selbstligierende Brackets zum Einsatz.

Methode

Die getesteten Brackets waren (1) konventionelle Brackets (Victory series, GAC twin nd FLI twin), (2) selbstligierende Brackets (Damon-Q, FLI-SL, new/improved FLI-SL (I FLI-SL), SPEED, GAC innovation (R) und Ortho Classic) und (3) ein Low-Friction-Bracket (Synergy). Alle Brackets hatten einen 0.022″ Slot. Die getesteten Bögen waren aus Stahl (0.018″; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″); Nickel-Titan (NiTi; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″) und Titan-Molybdän (TMA; 0.016″x0.022″; 0.017″x0.025″; 0.018″x0.025″ und 0.019″x0.025″). Die Eckzahnretraktion wurde experimentell in einem biomechanischen Versuchsaufbau unter Verwendung einer NiTi-Feder, die eine Kraft von 1 N generierte, simuliert. Der simulierte Retraktionsweg betrug bis zu 4 mm. Der Kraftverlust durch Friktion wurde zwischen den Gruppen mit dem Welch-t-Test verglichen.

Ergebnisse

Kraftverluste durch Friktion nahmen mit steigendem Bogendurchmesser zu. TMA zeigte den höchsten und Stahl den niedrigsten Kraftverlust. FLI-SL Brackets wiesen den niedrigsten Reibungsverlust (31%) und Ortho Classic den höchsten Wert auf (67%).

Schlussfolgerungen

Generell waren zunehmende Bogendimensionen mit zunehmendem Kraftverlust infolge Friktion verknüpft. FLI-SL Brackets wiesen die niedrigste, Ortho Classic die höchste Friktion auf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6
Fig. 7 Abb. 7
Fig. 8 Abb. 8
Fig. 9 Abb. 9

Similar content being viewed by others

References

  1. Alobeid A, El-Bialy T, Khawatmi S, Dirk C, Jäger A, Bourauel C (2017) Comparison of the force levels among labial and lingual self-ligating and conventional brackets in simulated misaligned teeth. Eur J Orthod 39:419–425

    Article  PubMed  Google Scholar 

  2. Andreasen GF, Quevedo FR (1970) Evaluation of friction forces in the 0.022 x 0.028 edgewise bracket in vitro. J Biomech 3:151–156

    Article  PubMed  Google Scholar 

  3. Articolo L, Kusy R (1999) Influence of angulation on the resistance of sliding in fixed appliances. Am J Orthod Dentofacial Orthop 115:39–51

    Article  PubMed  Google Scholar 

  4. Bednar JR, Gruendeman GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522

    Article  PubMed  Google Scholar 

  5. Berger LJ (1990) The influence of the SPEED bracket’s self-ligating design on force levels in tooth movement: A comparative in vitro study. Am J Orthod Dentofacial Orthop 97:219–228

    Article  PubMed  Google Scholar 

  6. Bourauel C, Drescher D, Thier M (1990) Kraft-Momenten-Aufnehmer für die Kieferorthopädie. Feinwerktech Messtech 98:419–422

    Google Scholar 

  7. Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378

    Article  PubMed  Google Scholar 

  8. Braun S, Bluestein M, Moore K, Benson G (1999) Friction in perspective. Am J Orthod Dentofacial Orthop 115:619–627

    Article  PubMed  Google Scholar 

  9. Burrow SJ (2009) Friction and resistance to sliding in orthodontics: A critical review. Am J Orthod Dentofacial Orthop 135:442–447

    Article  PubMed  Google Scholar 

  10. Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F (2003) Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofacial Orthop 124:395–402

    Article  PubMed  Google Scholar 

  11. Dholakia KD (2012) Friction and anchorage loading revisited. Orthodontics (Chic) 13:200–209

    Google Scholar 

  12. Drescher D, Bourauel C, Schumacher HA (1990) The loss of force by friction in arch-guided tooth movement. Fortschr Kieferorthop 51:99–105

    Article  PubMed  Google Scholar 

  13. Drescher D, Bourauel C, Thier M (1991) Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 13:169–178

    Article  PubMed  Google Scholar 

  14. Ehsani S, Mandich M, El-Bialy TH, Flores-Mir C (2009) Frictional resistance in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review. Angle Orthod 79:592–601

    PubMed  Google Scholar 

  15. Feynman RP, Leighton RB, Sands M (2010) Mainly mechanics, radiation, and heat. Feynman lectures on physics. The new millenium edition, vol 1. Perseus Books, Philadelphia, pp 12-3–12-6

    Google Scholar 

  16. Griffiths HS, Sherriff M, Ireland AJ (2005) Resistance to sliding with 3 types of elastomeric modules. Am J Orthod Dentofacial Orthop 127:670–675

    Article  PubMed  Google Scholar 

  17. Hain M, Dhopatkar A, Rock P (2006) A comparison of different ligation methods on friction. Am J Orthod Dentofacial Orthop 130:666–670

    Article  PubMed  Google Scholar 

  18. Halazonetis DJ (2007) Friction might increase anchorage loading. Am J Orthod Dentofacial Orthop 131:699–700

    Article  PubMed  Google Scholar 

  19. Henriques JFC, Higa RH, Semenara NT, Janson G, Fernandes TMF, Sathler R (2017) Evaluation of deflection forces of orthodontic wires with different ligation types. Braz Oral Res 31:e49

    Article  PubMed  Google Scholar 

  20. Husmann P, Bourauel C, Wessinger M, Jäger A (2002) The frictional behavior of coated guiding archwires. J Orofac Orthop 63:199–211

    Article  PubMed  Google Scholar 

  21. Jost-Brinkmann P, Miethke RR (1991) The effect of physiological tooth mobility on the friction between the bracket and the arch. Fortschr Kieferorthop 52:102–109

    Article  PubMed  Google Scholar 

  22. Kim TK, Kim KD, Baek SH (2008) Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system. Am J Orthod Dentofacial Orthop 133(187):e15–e24

    Google Scholar 

  23. Kusy RP, Whitley JQ (1990) Effects of surface roughness on the coefficients of friction in model orthodontic systems. J Biomech 23:913–925

    Article  PubMed  Google Scholar 

  24. Kusy RP, Whitley JQ (1997) Friction between different wire-bracket configurations and materials. Semin Orthod 3:166–177

    Article  PubMed  Google Scholar 

  25. Kusy RP, Whitley JQ (1999) Influence of archwire and bracket dimensions on sliding mechanics: Derivations and determinations of the critical contact angles for binding. Eur J Orthod 21:199–208

    Article  PubMed  Google Scholar 

  26. Kusy RP (2000) Ongoing innovations in biomechanics and materials for the new millennium. Angle Orthod 70:366–376

    PubMed  Google Scholar 

  27. Loftus B, Årtun J, Nichollis J, Alonzo T, Stoner J (1999) Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am J Orthod Dentofacial Orthop 116:336–345

    Article  PubMed  Google Scholar 

  28. Montasser MA, El-Bialy T, Keilig L, Reimann S, Jäger A, Bourauel C (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38

    Article  PubMed  Google Scholar 

  29. O’Reilly D, Dowling PA, Lagerström L, Swartz ML (1999) An ex vivo investigation into the effect of bracket displacement on the resistance to sliding. Br J Orthod 26:219–227

    Article  PubMed  Google Scholar 

  30. Phukaoluan A, Khantachawana A, Kaewtatip P, Dechkunakorn S, Anuwongnukroh N, Santiwong P, Kajornchaiyakul J (2017) Comparison of friction forces between stainless orthodontic steel brackets and TiNi wires in wet and dry conditions. Int Orthod 15:13–24

    PubMed  Google Scholar 

  31. Proffit WR, Fields HW, Ackerman J, Bailey L, Tulloch J (2000) Biomechanics and mechanics. In: Proffit WR, Fields HW (eds) Contemporary orthodontics, 3rd edn. Mosby, St Louis, pp 346–347

    Google Scholar 

  32. Rabiee SM, Eftekhari SZ, Arash V, Amozegar N, Fathi A, Tavanafar S, Bijani A (2017) Effect of CO2 laser power intensity on the surface morphology and friction behavior of alumina ceramic brackets. Microsc Res Tech 80:923–929

    Article  PubMed  Google Scholar 

  33. Reicheneder CA, Baumert U, Gedrange T, Proff P, Faltermeier A, Muessig D (2007) Frictional properties of aesthetic brackets. Eur J Orthod 29:359–365

    Article  PubMed  Google Scholar 

  34. Riley JL, Garrett SG, Moon PC (1979) Frictional forces of ligated plastic and metal edgewise brackets [Master’s thesis]. Virginia Commonwealth University, Medical College of Virginia, Richmond, Virginia

  35. Savoldi F, Visconti L, Dalessandri D, Bonetti S, Tsoi JKH, Matinlinna JP, Paganelli C (2017) In vitro evaluation of the influence of velocity on sliding resistance of stainless steel arch wires in a self-ligating orthodontic bracket. Orthod Craniofac Res 20:119–125

    Article  PubMed  Google Scholar 

  36. Schumacher HA, Bourauel C, Drescher D (1990) The effect of the ligature on the friction between bracket and arch. Fortschr Kieferorthop 51:106–116

    Article  PubMed  Google Scholar 

  37. Shivapuja PK, Berger JA (1994) A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 106:472–480

    Article  PubMed  Google Scholar 

  38. Southard TE, Marshall SD, Grosland NM (2007) Friction does not increase anchorage loading. Am J Orthod Dentofacial Orthop 31:412–414

    Article  Google Scholar 

  39. Sridharan K, Sandbhor S, Rajasekaran UB, Sam G, Ramees MM, Abraham EA (2017) An in vitro evaluation of friction characteristics of conventional stainless steel and self-ligating stainless steel brackets with different dimensions of archwires in various bracket-archwire combination. J Contemp Dent Pract 18:660–664

    Article  PubMed  Google Scholar 

  40. Wichelhaus A, Geserick M, Hibst R, Sander FG (2005) The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent Mater 21:938–945

    Article  PubMed  Google Scholar 

  41. Taylor N, Ison K (1996) Frictional resistance between orthodontic brackets and archwires in the buccal segments. Angle Orthod 66:215–221

    PubMed  Google Scholar 

  42. Tecco S, Di Iorio D, Cordasco G, Verrocchi I, Festa F (2007) An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur J Orthod 29:390–397

    Article  PubMed  Google Scholar 

  43. Thorstenson GA, Kusy RP (2002) Comparison of resistance to sliding between different self-ligating brackets with second order angulation in the dry and saliva states. Am J Orthod Dentofacial Orthop 121:472–482

    Article  PubMed  Google Scholar 

  44. Tidy D (1989) Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 96:249–254

    Article  PubMed  Google Scholar 

  45. Whitley JQ, Kusy RP (2007) Influence of interbracket distances on the resistance to sliding of orthodontic appliances. Am J Orthod Dentofacial Orthop 132:360–372

    Article  PubMed  Google Scholar 

  46. Yamaguchi K, Nanda RS, Morimoto N, Oda Y (1996) A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofacial Orthop 109:50–56

    Article  PubMed  Google Scholar 

  47. Yeh CL, Kusnoto B, Viana G, Evans CA, Drummond JL (2007) In-vitro evaluation of frictional resistance between brackets with passive-ligation designs. Am J Orthod Dentofacial Orthop 131(704):e11–e22

    Google Scholar 

Download references

Acknowledgements

This study was supported by Alexander von Humboldt Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek El-Bialy.

Ethics declarations

Conflict of interest

T. El-Bialy, A. Alobeid, C. Dirk, A. Jäger, L. Keilig and C. Bourauel declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bialy, T., Alobeid, A., Dirk, C. et al. Comparison of force loss due to friction of different wire sizes and materials in conventional and new self-ligating orthodontic brackets during simulated canine retraction. J Orofac Orthop 80, 68–78 (2019). https://doi.org/10.1007/s00056-019-00168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-019-00168-8

Keywords

Schlüsselwörter

Navigation