Is there an optimal initial amount of activation for midpalatal suture expansion?

A histomorphometric and immunohistochemical study in a rabbit model
  • Akram S. Alyessary
  • Adrian U. Yap
  • Siti A. Othman
  • Mohammad T. Rahman
  • N. M. AL-Namnam
  • Zamri Radzi
Original Article



Accelerated bone-borne expansion protocols on sutural separation and sutural bone formation were evaluated via histomorphometry and immunohistochemistry to determine the optimal initial activation without disruption of bone formation.

Materials and methods

Sixteen New Zealand white rabbits were randomly divided into four groups. Modified Hyrax expanders were placed across the midsagittal sutures and secured with miniscrew implants with the following activations: group 1 (control), 0.5 mm expansion/day for 12 days; group 2, 1 mm instant expansion followed by 0.5 mm expansion/day for 10 days; group 3, 2.5 mm instant expansion followed by 0.5 mm expansion/day for 7 days; and group 4, 4 mm instant expansion followed by 0.5 mm expansion/day for 4 days. After 6 weeks, sutural expansion and new bone formation were evaluated histomorphometrically. Statistical analysis was performed using Kruskal–Wallis/Mann–Whitney U tests and Spearman’s rho correlation (p < 0.05).


The smallest median sutural separation was observed in group 1 (3.05 mm) and the greatest in group 4 (4.57 mm). The lowest and highest amount of bone formation were observed in group 4 (55.82%) and in group 3 (66.93%), respectively. Immunohistochemical analysis revealed significant differences in median levels of alkaline phosphatase and osteopontin expression between all experimental groups. The highest level of these proteins was attained in group 3, followed by groups 2, 1, and 4, respectively.


Sutural appositional bone formation corresponded with the amount of initial expansion to a point. When initial expansion was increased to 4 mm, sutural bone remodeling was disturbed and new bone formation was decreased. The most effective sutural expansion was achieved with 2.5 mm initial activation followed by 0.5 mm expansion/day for 7 days.


Rapid maxillary expansion Initial expansion Bone-borne expanders Sutural bone formation  Histomorphometry 

Gibt es ein optimales Aktivierungsprotokoll zu Beginn der Gaumennahterweiterung?

Eine histomorphometrische und immunhistochemische Studie am Kaninchenmodell



Verschiedene Protokolle der beschleunigten knochengetragenen Expansion zur Gaumennahterweiterung und Knochenneubildung sollten histomorphometrisch und immunhistochemisch evaluiert werden, um die optimale initiale Aktivierung zu ermitteln, ohne dass die Knochenbildung unterbrochen wird.

Material und Methoden

Weiße Neuseelandkaninchen (n = 16) wurden randomisiert in 4 Gruppen aufgeteilt. Modifizierte Hyraxschrauben wurden über den Gaumennähten platziert und mit Minischraubenimplantaten verankert. Folgende Aktivierungen wurden verwendet: Gruppe 1 (Kontrolle), 0,5 mm Expansion pro Tag über 12 Tage, Gruppe 2: 1 mm direkte Expansion, gefolgt von 0,5 mm pro Tag über 10 Tage; Gruppe 3: 2,5 mm direkte Expansion, gefolgt von 0,5 mm Expansion pro Tag über 7 Tage und Gruppe 4: 4 mm direkte Expansion, gefolgt von 0,5 mm Expansion pro Tag über 4 Tage. Nach 6 Wochen wurden die Gaumennahterweiterung und die Knochenneubildung histomorphometrisch evaluiert. Die statistische Analyse erfolgte mit den Kruskal-Wallis/Mann-Whitney-U-Tests und dem Spearman-Korrelationskoeffizienten ρ (p < 0,05).


Die im Mittel geringste Gaumennahterweiterung zeigte sich in Gruppe 1 (3,05 mm), die höchste in Gruppe 4 (4,57 mm). Die geringste Menge neu gebildeten Knochens wurde in Gruppe 4 (55,82 %) beobachtet, die höchste in Gruppe 3 (66,93 %). Bei der immunhistochemischen Analyse zeigten sich signifikante Unterschiede der Mediane von ALP(alkalische Phosphatase)- und OPN(Osteopontin)-Expression zwischen allen experimentellen Gruppen. Die höchsten Konzentrationen dieser Proteine wurde in Gruppe 3 erreicht, gefolgt von den Gruppen 2, 1 und 4.


Die appositionelle Knochenneubildung an der Gaumennaht korrespondierte mit dem Ausmaß der initialen Expansion bis zu einem bestimmten Punkt. Überschritt die initiale Expansion 4 mm, wurde das suturale Remodeling gestört und die Knochenneubildung herabgesetzt. Die effektivste Erweiterung wurde mit einer initialen Aktivierung von 2,5 mm und einer darauf folgenden Expansion von 0,5 mm pro Tag über 7 Tage erzielt.


Gaumennahterweiterung Initiale Expansion Hybridhyrax Suturale Knochenneubildung Histomorphometrie 



This research is supported by High Impact Research MoE Grant UM.C/625/1/HIR/MOHE/DENT/21 from the Ministry of Education Malaysia and postgraduate research grant PG295-2016A from the University of Malaya. We would like to thank Prof. Karuthan Chinna from Department of Social and Preventive Medicine/Faculty of Medicine/University of Malaya for the statistical analysis of the data.

Conflict of interest

A.S. Alyessary, A.U. Yap, S.A. Othman, M.T. Rahman, N.M. AL-Namnam and Z. Radzi declare that they have no competing interests.


  1. 1.
    Akin M, Akgul Y, Ileri Z, Basciftci F (2016) Three-dimensional evaluation of hybrid expander appliances: a pilot study. Angle Orthod 86:81–86CrossRefPubMedGoogle Scholar
  2. 2.
    Alyessary A, Yap A, Othman S, Rahman M, Radzi Z (2017) Effect of piezoelectric sutural ostectomies on accelerated bone-borne sutural expansion. J Oral Maxillofac Surg. PubMedGoogle Scholar
  3. 3.
    Bertele G, Mercanti M, Stella F (1999) Structural dentofacial variations in maxilla expansion. Minerva Stomatol 48:101–113PubMedGoogle Scholar
  4. 4.
    Bondarenko A, Angrisani N, Meyer-Lindenberg A, Seitz J, Waizy H, Reifenrath J (2014) Magnesium-based bone implants: immunohistochemical analysis of peri-implant osteogenesis by evaluation of osteopontin and osteocalcin expression. J Biomed Mater Res A 102:1449–1457CrossRefPubMedGoogle Scholar
  5. 5.
    Carter DR, Beaupré GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–S55CrossRefGoogle Scholar
  6. 6.
    Chang H‑N, Garetto LP, Potter RH, Katona TR, Lee C‑H, Roberts WE (1997) Angiogenesis and osteogenesis in an orthopedically expanded suture. Am J Orthod Dentofacial Orthop 111:382–390CrossRefPubMedGoogle Scholar
  7. 7.
    Farhadian N, Miresmaeili A, Azar R, Zargaran M, Moghimbeigi A, Soheilifar S (2015) Effect of dietary ascorbic acid on osteogenesis of expanding midpalatal suture in rats. J Dent (tehran) 12:39–48Google Scholar
  8. 8.
    Feldmann I, Bazargani F (2017) Pain and discomfort during the first week of rapid maxillary expansion (RME) using two different RME appliances: a randomized controlled trial. Angle Orthod 87:391–396CrossRefPubMedGoogle Scholar
  9. 9.
    Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD (2008) Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 134:8–9CrossRefPubMedGoogle Scholar
  10. 10.
    Gentile P, Nandagiri VK, Pabari R et al (2015) Influence of parathyroid hormone-loaded PLGA nanoparticles in porous scaffolds for bone regeneration. Int J Mol Sci 16:20492–20510CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18:444–448CrossRefGoogle Scholar
  12. 12.
    Gurel HG, Memili B, Erkan M, Sukurica Y (2010) Long-term effects of rapid maxillary expansion followed by fixed appliances. Angle Orthod 80:5–9CrossRefPubMedGoogle Scholar
  13. 13.
    Hao L, Yong G, Lu L (2013) Bone formation in rabbit cancellous bone explant culture model is enhanced by mechanical load. Biomed Eng Online 12:35. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Herring SW, Teng S (2000) Strain in the braincase and its sutures during function. Am J Phys Anthropol 112:575CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hickory WB, Nanda R (1987) Effect of tensile force magnitude on release of cranial suture cells into S phase. Am J Orthod Dentofacial Orthop 91:328–334CrossRefPubMedGoogle Scholar
  16. 16.
    Hirukawa K, Miyazawa K, Maeda H, Kameyama Y, Goto S, Togari A (2005) Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture. Arch Oral Biol 50:367–372CrossRefPubMedGoogle Scholar
  17. 17.
    Hou B, Fukai N, Olsen BR (2007) Mechanical force-induced midpalatal suture remodeling in mice. Bone 40:1483–1493CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jayash SN, Hashim NM, Misran M, Baharuddin N (2017) Formulation and in vitro and in vivo evaluation of a new osteoprotegerin-chitosan gel for bone tissue regeneration. J Biomed Mater Res A 105:398–407CrossRefPubMedGoogle Scholar
  19. 19.
    Klier B, Zenk W, Langbein U (2005) Stellt die GNE mittels Palatinaldistraktor eine Alternative zur chirurgisch unterstützten Erweiterung mit einer Hyraxapparatur dar? Kieferorthopäde 19:9–16Google Scholar
  20. 20.
    Kraut RA (1984) Surgically assisted rapid maxillary expansion by opening the midpalatal suture. J Oral Maxillofac Surg 42:651–655CrossRefPubMedGoogle Scholar
  21. 21.
    Lee K, Sugiyama H, Imoto S, Tanne K (2001) Effects of bisphosphonate on the remodeling of rat sagittal suture after rapid expansion. Angle Orthod 71:265–273PubMedGoogle Scholar
  22. 22.
    Lin L, Ahn H‑W, Kim S‑J, Moon S‑C, Kim S‑H, Nelson G (2014) Tooth-borne vs bone-borne rapid maxillary expanders in late adolescence. Angle Orthod 85:253–262CrossRefPubMedGoogle Scholar
  23. 23.
    Liu SS-Y, Kyung H‑M, Buschang PH (2010) Continuous forces are more effective than intermittent forces in expanding sutures. Eur J Orthod 32:371–380CrossRefPubMedGoogle Scholar
  24. 24.
    Liu Y, Tang Y, Xiao L, Liu SS-Y, Yu H (2014) Suture cartilage formation pattern varies with different expansive forces. Am J Orthod Dentofacial Orthop 146:442–450CrossRefPubMedGoogle Scholar
  25. 25.
    Miyawakl S, Forbes DP (1987) The morphologic and biochemical effects of tensile force application to the interparietal suture of the Sprague-Dawley rat. Am J Orthod Dentofacial Orthop 92:123–133CrossRefGoogle Scholar
  26. 26.
    Mizuta H, Nakamura E, Mizumoto Y, Kudo S, Takagi K (2003) Effect of distraction frequency on bone formation during bone lengthening A study in chickens. Acta Orthop Scand 74:709–713CrossRefPubMedGoogle Scholar
  27. 27.
    Mörndal O (1987) The importance of force magnitude on the initial response to mechanical stimulation of osteogenic and soft tissue. Eur J Orthod 9:288–294CrossRefPubMedGoogle Scholar
  28. 28.
    Murray JMG, Cleall JF (1971) Early tissue response to rapid maxillary expansion in the midpalatal suture of the rhesus monkey. J Dent Res 50:1654–1660CrossRefPubMedGoogle Scholar
  29. 29.
    Nunamaker D (1998) Experimental models of fracture repair. Clin Orthop Relat Res 355:S56–S65CrossRefGoogle Scholar
  30. 30.
    Öztürk F, Babacan H, Gümüş C (2012) Effects of zoledronic acid on sutural bone formation: a computed tomography study. Eur J Orthod 34:141–146CrossRefPubMedGoogle Scholar
  31. 31.
    Park JJ, Park Y‑C, Lee K‑J, Cha J‑Y, Tahk JH, Choi YJ (2017) Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: A cone-beam computed tomography study. Korean J Orthod 47:77–86CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Parr JA, Garetto LP, Wohlford ME, Arbuckle GR, Roberts WE (1997) Sutural expansion using rigidly integrated endosseous implants: an experimental study in rabbits. Angle Orthod 67:283–290PubMedGoogle Scholar
  33. 33.
    Perrien DS, Brown EC, Aronson J et al (2002) Immunohistochemical study of osteopontin expression during distraction osteogenesis in the rat. J Histochem Cytochem 50:567–574CrossRefPubMedGoogle Scholar
  34. 34.
    Pulver RJ, Campbell PM, Opperman LA, Buschang PH (2016) Miniscrew-assisted slow expansion of mature rabbit sutures. Am J Orthod Dentofacial Orthop 150:303–312CrossRefPubMedGoogle Scholar
  35. 35.
    Romão M, Marques M, Cortes A, Horliana A, Moreira M, Lascala C (2015) Micro-computed tomography and histomorphometric analysis of human alveolar bone repair induced by laser phototherapy: a pilot study. Int J Oral Maxillofac Surg 44:1521–1528CrossRefPubMedGoogle Scholar
  36. 36.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The imageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Siffert RS (1951) The role of alkaline phosphatase in osteogenesis. J Exp Med 93:415–426CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stewart MC, McCormick LE, Goliath JR, Sciulli PW, Stout SD (2013) A comparison of histomorphometric data collection methods. J Forensic Sci 58:109–113CrossRefPubMedGoogle Scholar
  39. 39.
    Takushima A, Kitano Y, Harii K (1998) Osteogenic potential of cultured periosteal cells in a distracted bone gap in rabbits. J Surg Res 78:68–77CrossRefPubMedGoogle Scholar
  40. 40.
    Turley P, Shapiro P, Moffett B (1980) The loading of bioglass-coated aluminium oxide implants to produce sutural expansion of the maxillary complex in the pigtail monkey (Macaca nemestrina). Arch Oral Biol 25:459–469CrossRefPubMedGoogle Scholar
  41. 41.
    Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355CrossRefPubMedGoogle Scholar
  42. 42.
    Welch RD, Birch JG, Makarov MR, Samchukov ML (1998) Histomorphometry of distraction osteogenesis in a caprine tibial lengthening model. J Bone Miner Res 13:1–9CrossRefPubMedGoogle Scholar
  43. 43.
    Wu J, Ru N, Li S (2015) Peroxisome proliferator-activated receptor gamma regulates bone remodeling after midpalatal suture expansion in mice. Int J Oral Maxillofac Implants 30:1423–1430CrossRefPubMedGoogle Scholar
  44. 44.
    Yen E, Yue C, Suga D (1989) Effect of force level on synthesis of type III and type I collagen in mouse interparietal suture. J Dent Res 68:1746–1751CrossRefPubMedGoogle Scholar
  45. 45.
    You J, Reilly GC, Zhen X et al (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3–E1 osteoblasts. J Biol Chem 276:13365–13371CrossRefPubMedGoogle Scholar
  46. 46.
    Zahrowski JJ, Turley PK (1992) Force magnitude effects upon osteoprogenitor cells during premaxillary expansion in rats. Angle Orthod 62:197–202PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Akram S. Alyessary
    • 1
    • 3
  • Adrian U. Yap
    • 2
    • 6
  • Siti A. Othman
    • 1
  • Mohammad T. Rahman
    • 4
  • N. M. AL-Namnam
    • 5
  • Zamri Radzi
    • 1
  1. 1.Department of Paediatric Dentistry and Orthodontics, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Dentistry, Ng Teng Fong General HospitalNational University Health SystemSingaporeSingapore
  3. 3.Department of Orthodontics, College of DentistryKerbala UniversityKerbalaIraq
  4. 4.Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  5. 5.Department of Oral and Maxillofacial Clinical Sciences, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  6. 6.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations