coloproctology

, Volume 40, Issue 2, pp 109–113 | Cite as

Robotik in der Chirurgie

Mehrwert oder kein zusätzlicher Nutzen?
Leitthema
  • 76 Downloads

Zusammenfassung

Hintergrund

Der Stellenwert der computergestützten Chirurgie wird trotz zunehmender Etablierung der Technik kontrovers diskutiert.

Kosten-Nutzen-Vergleich

Häufiger Gegenstand der Diskussion sind die höheren Kosten und die bislang unzureichende Evidenz für eine Überlegenheit der robotergestützten Technik im Vergleich zu den konventionell laparoskopischen Verfahren. Die Frage nach dem Mehrwert der Robotik erfordert darüber hinaus die Auseinandersetzung mit der Thematik aus der Perspektive der Anwender. Nicht zuletzt sollte eine Betrachtung des aktuellen und zukünftigen technischen und digitalen Potenzials der computergestützten Chirurgie in die Beantwortung der Frage nach dem Mehrwert einfließen.

Schlüsselwörter

Roboterchirurgie Laparoskopie Computerunterstützte Techniken Zukunft Automatisierung 

Robotics in surgery

Value added or no added value?

Abstract

Background

Although computer-assisted surgery is becoming increasingly established, its practical value is controversially discussed.

Cost-benefit analysis

The debate often centers on its higher costs and the insufficient evidence of its superiority to conventional laparoscopic techniques. The question regarding the added value of robotic systems in surgery must, however, also consider the perspective of the surgeons who use them. Finally, examination of the current and future technological and digital potential of computer-assisted surgery must include an answer to the question regarding its added value.

Keywords

Robotic surgical procedures  Laparoscopy Computing methodologies Future Automation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

K. Krajinovic und M. Kim geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Valverde A, Goasguen N, Oberlin O, Svrcek M, Fléjou JF, Sezeur A, Mosnier H, Houdart R, Lupinacci RM (2017) Robotic versus laparoscopic rectal resection for sphincter-saving surgery: pathological and short-term outcomes in a single-center analysis of 130 consecutive patients. Surg Endosc.  https://doi.org/10.1007/s00464-017-5455-7 Google Scholar
  2. 2.
    Sun Z, Kim J, Adam MA, Nussbaum DP, Speicher PJ, Mantyh CR, Migaly J (2016) Minimally invasive versus open low anterior resection: equivalent survival in a national analysis of 14,033 patients with rectal cancer. Ann Surg 263(6):1152–1158.  https://doi.org/10.1097/SLA.0000000000001388 CrossRefPubMedGoogle Scholar
  3. 3.
    Bhama AR, Wafa AM, Ferraro J, Collins SD, Mullard AJ, Vandewarker JF, Krapohl G, Byrn JC, Cleary RK (2016) Comparison of risk factors for unplanned conversion from laparoscopic and robotic to open colorectal surgery using the Michigan Surgical Quality Collaborative (MSQC) database. J Gastrointest Surg 20(6):1223–1230.  https://doi.org/10.1007/s11605-016-3090-6 CrossRefPubMedGoogle Scholar
  4. 4.
    Bhama AR, Obias V, Welch KB, Vandewarker JF, Cleary RK (2016) A comparison of laparoscopic and robotic colorectal surgery outcomes using the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Surg Endosc 30(4):1576–1584.  https://doi.org/10.1007/s00464-015-4381-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Speicher PJ, Englum BR, Ganapathi AM, Nussbaum DP, Mantyh CR, Migaly J (2015) Robotic low anterior resection for rectal cancer: a national perspective on short-term oncologic outcomes. Ann Surg 262(6):1040–1045.  https://doi.org/10.1097/SLA.0000000000001017 CrossRefPubMedGoogle Scholar
  6. 6.
    Li X, Wang T, Yao L, Hu L, Jin P, Guo T, Yang K (2017) The safety and effectiveness of robot-assisted versus laparoscopic TME in patients with rectal cancer: a meta-analysis and systematic review. Medicine (Baltimore) 96(29):e7585.  https://doi.org/10.1097/MD.0000000000007585 CrossRefGoogle Scholar
  7. 7.
    Jayne D, Pigazzi A, Marshall H, Croft J, Corrigan N, Copeland J, Quirke P, West N, Rautio T, Thomassen N, Tilney H, Gudgeon M, Bianchi PP, Edlin R, Hulme C, Brown J (2017) Effect of robotic-assisted vs conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 318(16):1569–1580.  https://doi.org/10.1001/jama.2017.7219 CrossRefPubMedGoogle Scholar
  8. 8.
    Harr JN, Haskins IN, Amdur RL, Agarwal S, Obias V (2017) The effect of obesity on laparoscopic and robotic-assisted colorectal surgery outcomes: an ACS-NSQIP database analysis. J Robot Surg 12.  https://doi.org/10.1007/s11701-017-0736-7 PubMedGoogle Scholar
  9. 9.
    Ahmed J, Cao H, Panteleimonitis S, Khan J, Parvaiz A (2017) Robotic versus laparoscopic rectal surgery in high-risk patients. Colorectal Dis.  https://doi.org/10.1111/codi.13783 Google Scholar
  10. 10.
    Panteleimonitis S, Ahmed J, Harper M, Parvaiz A (2016) Critical analysis of the literature investigating urogenital function preservation following robotic rectal cancer surgery. World J Gastrointest Surg 8(11):744–754CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Panteleimonitis S, Ahmed J, Ramachandra M, Farooq M, Harper M, Parvaiz A (2017) Urogenital function in robotic vs laparoscopic rectal cancer surgery: a comparative study. Int J Colorectal Dis 32(2):241–248.  https://doi.org/10.1007/s00384-016-2682-7 CrossRefPubMedGoogle Scholar
  12. 12.
    Kim J, Baek SJ, Kang DW, Roh YE, Lee JW, Kwak HD, Kwak JM, Kim SH (2017) Robotic resection is a good prognostic factor in rectal cancer compared with laparoscopic resection: long-term survival analysis using propensity score matching. Dis Colon Rectum 60(3):266–273.  https://doi.org/10.1097/DCR.0000000000000770 PubMedGoogle Scholar
  13. 13.
    D’Annibale A, Pernazza G, Monsellato I, Pende V, Lucandri G, Mazzocchi P, Alfano G (2013) Total mesorectal excision: a comparison of oncological and functional outcomes between robotic and laparoscopic surgery for rectal cancer. Surg Endosc 27(6):1887–1895.  https://doi.org/10.1007/s00464-012-2731-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Sun Y, Xu H, Li Z, Han J, Song W, Wang J, Xu Z (2016) Robotic versus laparoscopic low anterior resection for rectal cancer: a meta-analysis. World J Surg Oncol 1(14):61.  https://doi.org/10.1186/s12957-016-0816-6 CrossRefGoogle Scholar
  15. 15.
    Stefanidis D, Wang F, Korndorffer JR Jr, Dunne JB, Scott DJ (2010) Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. Surg Endosc 24(2):377–382.  https://doi.org/10.1007/s00464-009-0578-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Chandra V, Nehra D, Parent R, Woo R, Reyes R, Hernandez-Boussard T, Dutta S (2010) A comparison of laparoscopic and robotic assisted suturing performance by experts and novices. Surgery 147:830–839CrossRefPubMedGoogle Scholar
  17. 17.
    van der Schatte Olivier RH, Van’t Hullenaar CD, Ruurda JP, Broeders IA (2009) Ergonomics, user comfort, and performance in standard and robot-assisted laparoscopic surgery. Surg Endosc 23(6):1365–1371.  https://doi.org/10.1007/s00464-008-0184-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Lee GI, Lee MR, Clanton T, Sutton E, Park AE, Marohn MR (2014) Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg Endosc 28(2):456–465.  https://doi.org/10.1007/s00464-013-3213-z CrossRefPubMedGoogle Scholar
  19. 19.
    Lee GI, Lee MR, Green I, Allaf M, Marohn MR (2017) Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg Endosc 31(4):1697–1706.  https://doi.org/10.1007/s00464-016-5160-y CrossRefPubMedGoogle Scholar
  20. 20.
    Jiménez-Rodríguez RM, Rubio-Dorado-Manzanares M, Díaz-Pavón JM, Reyes-Díaz ML, Vazquez-Monchul JM, Garcia-Cabrera AM, Padillo J, De la Portilla F (2016) Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Colorectal Dis 31(12):1807–1815CrossRefPubMedGoogle Scholar
  21. 21.
    Nasir M, Panteleimonitis S, Ahmed J, Abbas H, Parvaiz A (2016) Learning curves in robotic rectal cancer surgery: a literature review. J Minim Invasive Surg Sci 5(4):e41196CrossRefGoogle Scholar
  22. 22.
    Guend H, Widmar M, Patel S, Nash GM, Paty PB, Guillem JG, Temple LK, Garcia-Aguilar J, Weiser MR (2016) Developing a robotic colorectal cancer surgery program: understanding institutional and individual learning curves. Scand J Gastroenterol 51(4):385–392.  https://doi.org/10.3109/00365521.2015 CrossRefGoogle Scholar
  23. 23.
    Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, Mutter D (2002) Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg 235(4):487–492CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim YM, Baek SE, Lim JS, Hyung WJ (2013) Clinical application of image-enhanced minimally invasive robotic surgery for gastric cancer: a prospective observational study. J Gastrointest Surg 17(2):304–312.  https://doi.org/10.1007/s11605-012-2094-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für Allgemein‑, Viszeral‑, Gefäß- und KinderchirurgieUniversitätsklinikum WürzburgWürzburgDeutschland

Personalised recommendations