Skip to main content
Log in

The role of chemical signalling in maintenance of the fungus garden by leaf-cutting ants

  • Commentary
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

How foraging trails are formed and the chemical communication between individual ants is well known. However, communication between partners in mutualistic relationships, such as the leaf-cutting ants (LCA) and their symbiotic fungus, is less studied. There is a feedback mechanism that operates in LCA colonies, with the fungus garden communicating its condition to the ants, most probably using chemicals. We discuss the literature on the chemistry of the LCA–forage–fungus system starting from selection of plants and its effect on the fungus garden. We suggest, using chemical examples, how the fungus might communicate with attendant ants and suggest areas for future research into this fascinating and complex system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ambrozin ARP, Leite AC, Bueno FC et al (2006) Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J Braz Chem Soc 17:542–547

    Article  CAS  Google Scholar 

  • Arenas A, Roces F (2016a) Learning through the waste: olfactory cues from the colony refuse influence plant preferences in foraging leaf-cutting ants. J Exp Biol 219:2490–2496

    Article  PubMed  Google Scholar 

  • Arenas A, Roces F (2016b) Gardeners and midden workers in leaf-cutting ants learn to avoid plants unsuitable for the fungus at their worksites. Anim Behav 115:167–174

    Article  Google Scholar 

  • Arenas A, Roces F (2017) Avoidance of plants unsuitable for the symbiotic fungus in leaf-cutting ants: learning can take place entirely at the colony dump. PLoS One 12:e0171388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beck JJ, Torto B, Vannette RL (2017) Eavesdropping on plant–insect–microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals. J Agric Food Chem 65:S101–S103

    Google Scholar 

  • Berish CW (1986) Leaf-cutting ants (Atta cephalotes) select nitrogen rich forage. Am Midl Nat 115:268–276

    Article  Google Scholar 

  • Bigi M, Torkomian VL, de Groote ST et al (2004) Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Manag Sci 60:933–938

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum SSL, Gerardo NM (2016) Patterns of specificity of the pathogen Escovopsis across the fungus-growing ant symbiosis. Am Nat 188:52–65

    Article  PubMed  Google Scholar 

  • Bollazzi M, Roces F, Núñez J et al (2011) Information needs at the beginning of foraging: grass-cutting ants trade off load size for a faster return to the nest. PLoS One 6:e17667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Böllmann J, Elmer M, Wöllecke J et al (2010) Defensive strategies of soil fungi to prevent grazing by Folsomia candida (Collembola). Pedobiologia 53:107–114

    Article  Google Scholar 

  • Bradshaw JWS, Howse PE, Baker R (1986) A novel autostimulatory pheromone regulating transport of leaves in Atta cephalota. Animal Behav 34:234–240

    Article  Google Scholar 

  • Branstetter MG, Jesovnik A, Sosa-Calvo J, Lloyd MW, Faircloth BC, Brady SG, Schultz TR (2017) Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proc R Soc B Biol Sci 284:20170095

    Article  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  PubMed  CAS  Google Scholar 

  • Bueno OC, Hebling MJA, da Silva OA, Matenhauer AMC (1995) Effect of sesame (Sesamum indicum) on nest development of Atta sexdens rubropilosa (Hymenoptera: Formicidae). J Appl Entomol 119:341–343

    Article  Google Scholar 

  • Bueno FC, Godoy MP, Leite AC et al (2005) Toxicity of Cedrela fissilis to Atta sexdens rubropilosa (Hymenoptera: Formicidae) and its symbiotic fungus. Sociobiology 45:389–399

    Google Scholar 

  • Camargo RS, Forti LC, Lopes JFS, de Matos CAO (2008) Growth of populations and fungus gardens of Atta sexdens rubropilosa (Hymeoptera, Formicidae) response to foraged substrates. Sociobiology 52:1–11

    Google Scholar 

  • Chen TK, Ales DC, Baenziger NC, Wiemer DF (1983) Ant-repellent triterpenoids from Cordia alliodora. J Org Chem 48:3525–3531

    Article  CAS  Google Scholar 

  • Cherrett JM (1972) Some factors involved in the selection of vegetable substrate by Atta cephalotes (L.) (Hymenoptera: Formicidae) in tropical rain forest. J Anim Ecol 41:647–660

    Article  Google Scholar 

  • Chomicki G, Renner SS (2016) Obligate plant farming by a specialized ant. Nat Plants 2:16181

    Article  PubMed  CAS  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Vasconcelos H, Vieira-Neto EHM, Bruna E (2008) Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. J Veget Sci 19:849–854

    Article  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus growing ants use antibiotic producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152

    Article  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859

    Article  PubMed  CAS  Google Scholar 

  • De Fine Licht HH, Boomsma JJ (2010) Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecol Entomol 35:259–269

    Article  Google Scholar 

  • Della Lucia TMC, Gandra LC, Guedes RNC (2014) Managing leaf-cutting ants: peculiarities, trends and challenges. Pest Manag Sci 70:14–23

    Article  PubMed  CAS  Google Scholar 

  • Diaz Napal GN, Buffa LM, Nolli LC et al (2015) Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guerin) and its symbiotic fungus. Ind Crops Prod 76:275–280

    Article  Google Scholar 

  • Estrada C, Wcislo WT, Van Bael SA (2013) Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. New Phytol 198:241–251

    Article  PubMed  Google Scholar 

  • Estrada C, Rojas EI, Wcislo WT, van Bael SA (2014) Fungal endophyte effects on leaf chemistry alter the in vitro growth rates of leaf-cutting ants` fungal mutualist, Leucocoprinus gongylophorus. Fung Ecol 8:37–45

    Article  Google Scholar 

  • Estrada C, Degner EC, Rojas EI et al (2015) The role of endophyte diversity in protecting plants from defoliation by leaf-cutting ants. Curr Sci 109:55–61

    Google Scholar 

  • Farji-Brener AG (2001) Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis. Oikos 92:169–177

    Article  Google Scholar 

  • Fernandez-Marin H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc B Biol Sci 273:1689–1695

    Article  Google Scholar 

  • Fernandez-Marin H, Nash DR, Higginbotham S et al (2015) Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants. Proc R Soc B Biol Sci 282:20150212

    Article  CAS  Google Scholar 

  • Fischer MK, Hoffmann KH, Volkl W (2001) Competition for mutualists in an ant-homopteran interaction mediated by hierarchies of ant attendance. Oikos 92:531–541

    Article  Google Scholar 

  • Fisher PJ, Stradling DJ, Pegler DN (1994a) Leaf cutting ants, their fungus gardens and the formation of basidiomata of Leucoagaricus gongylophorus. Mycologist 8:128–131

    Article  Google Scholar 

  • Fisher PJ, Stradling DJ, Pegler DN (1994b) Leucoagaricus basidiomata from a live nest of the leaf-cutting ant Atta cephalotes. Mycol Res 98:884–888

    Article  Google Scholar 

  • Folgarait PJ, Dyer LA, Marquis RJ, Braker HE (1996) Leaf-cutting ant preferences for five native tropical plantation tree species growing under different light conditions. Entomol Exp Appl 80:521–530

    Article  Google Scholar 

  • Folgarait PJ, Marfetán JA, Cafaro MJ (2011) Growth and conidiation response of Escovopsis weberi (Ascomycota: Hypocreales) against the fungal cultivar of Acromyrmex lundii (Hymenoptera: Formicidae). Environ Entomol 40:342–349

    Article  Google Scholar 

  • Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca, New York, USA

    Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez JV, Goitia W, Osio A et al (2006) Leaf-cutter ant species (Hymenoptera: Atta) differ in the types of cues used to differentiate between self and others. Anim Behav 71:945–952

    Article  Google Scholar 

  • Herz H, Hölldobler B, Roces F et al (2008) Delayed rejection in a leaf-cutting ant after foraging on plants unsuitable for the symbiotic fungus. Behav Ecol 19:575–582

    Article  Google Scholar 

  • Holighaus G, Rohlfs M (2016) Fungal allelochemicals in insect pest management. Appl Microbiol Biotechnol 100:5681–5689

    Article  PubMed  CAS  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Balnap/Harvard, Cambridge

    Book  Google Scholar 

  • Hölldobler B, Wilson EO (2011) The leafcutter ants (civilisation by instinct). W.W. Norton & Company, New York

    Google Scholar 

  • Howard JJ (1987) Leafcutting ant diet selection—the role of nutrients, water and secondary chemistry. Ecology 68:503–515

    Article  Google Scholar 

  • Howard JJ (1988) Leafcutting ant diet selection—relative influence of leaf chemistry and physical features. Ecology 69:250–260

    Article  Google Scholar 

  • Howard JJ (1990) Infidelity of leafcutting ants to host plants—resource heterogeneity or defense induction. Oecologia 82:394–401

    Article  PubMed  Google Scholar 

  • Howard JJ, Cazin J, Wiemer DF (1988) Toxicity of terpenoid deterrents to the leafcutting ant Atta cephalotes and its mutualistic fungus. J Chem Ecol 14:59–69

    Article  PubMed  CAS  Google Scholar 

  • Howard JJ, Green TP, Wiemer DF (1989) Comparative deterrency of 2 terpenoids to 2 genera of Attine ants. J Chem Ecol 15:2279–2288

    Article  PubMed  CAS  Google Scholar 

  • Hubbell SP, Wiemer DF (1983) Host plant selection by an Attine ant. In: Jaisson P (ed) Social insects in the tropics, vol 2. University of Paris Press, Paris, pp 133–154

    Google Scholar 

  • Hubbell SP, Howard JJ, Wiemer DF (1984) Chemical leaf repellency to an Attine ant – seasonal distribution among potential host plant species. Ecology 65:1067–1076

    Article  Google Scholar 

  • Kooij PW, Liberti J, Giampoudakis K et al (2014) Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting Ants. PLoS One 9(4):e94284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kooij PW, Poulsen M, Schiøtt M, Boomsma JJ (2015) Somatic incompatability and genetic structure of fungal crops in sympatric Atta colombica and Acromyrmex echinatior leaf-cutting ants. Fungal Ecol 18:10–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Kost C, Tremmel M, Wirth R (2011) Do leaf cutting ants cut undetected? Testing the effect of ant-induced plant defences on foraging decisions in Atta colombica. PLoS One 6(7):e22340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lapointe SL, Serrano MS, Corrales II (1996) Resistance to leafcutter ants (Hymenoptera: Formicidae) and inhibition of their fungal symbiont by tropical forage grasses. J Econ Entomol 89:757–765

    Article  Google Scholar 

  • Leal IR, Wirth R, Tabarelli M (2014) The multiple impacts by leaf-cutting ants and their novel ecological role in human modified neotropical forests. Biotropica 46:516–528

    Article  Google Scholar 

  • Lenoir A (1982) An informational analysis of antenall communication during trophallaxis in the ant Myrmica rubra L. Behav Process 7:27–35

    Article  CAS  Google Scholar 

  • Littledyke M, Cherrett JM (1975) Variability in selection of substrate by leaf-cutting ants Atta cephalotes (L.) and Acromyrmex octospinosus (Reich) (Formicidae, Attini). Bull Entomol Res 65:33–47

    Article  Google Scholar 

  • Littledyke M, Cherrett JM (1978) Defence mechanisms in young and old leaves against cutting by leaf-cutting ants Atta cephalotes (L.) and Acromyrmex octospinosus (Reich) (Hymenoptera: Formicidae). Bull Entomol Res 68:263–271

    Article  Google Scholar 

  • Mangone DM, Currie CR (2007) Garden substrate preparation behaviours in fungus-growing ants. Can Entomol 139:841–849

    Article  Google Scholar 

  • Marfetán JA, Romero AI, Folgarait PJ (2015) Pathogenic interaction between Escovopsis weberi and Leucoagaricus sp.: mechanisms involved in virulence levels. Fungal Ecol 17:52–61

    Article  Google Scholar 

  • Masiulionis VE, Cabello MN, Seifert KA et al (2015) Escovopsis trichodermoides sp. nov., isolated from a nest of the lower attine ant Mycocepurus goeldii. Antonie Van Leeuwenhoek 107:731–740

    Article  PubMed  CAS  Google Scholar 

  • McGlynn TP, Fawcett RM, Clark DA (2009) Litter biomass and nutrient determinants of ant density, nest size, and growth in a Costa Rican tropical wet forest. Biotropica 41:234–240

    Article  Google Scholar 

  • Mehdiabadi NJ, Schultz TR (2010) Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). Myrmecological News 13:37–55

    Google Scholar 

  • Mendes TD, Rodrigues A, Dayo-Owoyemi I et al (2012) Generation of nutrients and detoxification: possible roles of yeasts in leaf-cutting ant nests. Insects 3:228–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer ST, Roces F, Wirth R (2006) Selecting the drought stressed: effects of plant stress on intraspecific and within-plant herbivory patterns of the leaf-cutting ant Atta colombica. Funct Ecol 20:973–981

    Article  Google Scholar 

  • Mighell K, van Bael SA (2016) Selective elimination of microfungi in leaf-cutting ant gardens. Fung Ecol 24:15–20

    Article  Google Scholar 

  • Miyashira CH, Tanigushi DG, Gugliotta AM, Santos D (2012) Influence of caffeine on the survival of leaf-cutting ants Atta sexdens rubropilosa and in vitro growth of their mutualistic fungus. Pest Manag Sci 68:935–940

    Article  PubMed  CAS  Google Scholar 

  • Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83

    Article  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Mueller UG, Ishak HD, Bruschi et al (2017) Biogeography of mutualistic fungi cultivated by leafcutter ants. Mol Ecol 00:1–17

    Google Scholar 

  • Mundim FM, Costa AN, Vasconcelos HL (2009) Leaf nutrient content and host plant selection by leaf-cutter ants, Atta laevigata, in a Neotropical savanna. Entomol Exp Appl 130:47–54

    Article  Google Scholar 

  • Nichols-Orians CM, Schultz JC (1989) Leaf toughness affects leaf harvesting by the leaf cutter ant, Atta cephalotes (L.) (Hymenoptera, Formicidae). Biotropica 21:80–83

    Article  Google Scholar 

  • Norman VC, Butterfield T, Drijfhout F et al (2017) Alarm pheromone composition and behavioral activity in fungus-growing ants. J Chem Ecol 43:225–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • North RD, Jackson CW, Howse PE (1997) Evolutionary aspects of ant-fungus interactions in leaf-cutting ants. Trends Ecol Evol 12:386–389

    Article  PubMed  CAS  Google Scholar 

  • North RD, Jackson CW, Howse PE (1999) Communication between the fungus garden and workers of the leaf-cutting ant, Atta sexdens rubropilosa, regarding choice of substrate for the fungus. Physiol Entomol 24:127–133

    Article  Google Scholar 

  • Ortius-Lechner D, Maile R, Morgan ED, Boomsma JJ (2000) Metaplural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance. J Chem Ecol 26:1667–1683

    Article  CAS  Google Scholar 

  • Pagnocca FC, Dasilva OA, Heblingberaldo MJ et al (1990) Toxicity of sesame extracts to the symbiotic fungus of leaf-cutting ants. Bull Entomol Res 80:349–352

    Article  Google Scholar 

  • Pagnocca FC, Ribeiro SB, Torkomian VLV et al (1996) Toxicity of lignans to symbiotic fungus of leaf-cutting ants. J Chem Ecol 22:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Pagnocca FC, Bacci M Jr, Fungaro MH, Bueno OC, Hebling MJA, Sant`Anna A et al (2001) RAPD analysis of the sexual state and sterile mycelium of the fungus cultivated by the leaf0-cutting ant Acromyrmex hispidus fallax. Mycol Res 105:173–176

    Article  Google Scholar 

  • Pagnocca FC, Victor SR, Bueno FC et al (2006) Synthetic amides toxic to the leaf-cutting ant Atta sexdens rubropilosa L. and its symbiotic fungus. Agric For Entomol 8:17–23

    Article  Google Scholar 

  • Pereira JS, Costa RR, Nagamoto NS, Forti LC, Pagnocca FC, Rodrigues A (2016) Comparative analysis of fungal communities in colonies of two leaf-cutting ant species with different substratum preferences. Fungal Ecol 21:68–75

    Article  Google Scholar 

  • Perri D, Gorostino N, Fernandez P, Buteler M (2017) Plant-based compounds with potential as push-pull stimuli to manage behaviour of leaf-cutting ants. Entomol Exp Appl 163:150–159

    Article  CAS  Google Scholar 

  • Pinto-Tomás MA, Suen AG, Stevenson DM, Chu FST, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  PubMed  CAS  Google Scholar 

  • Poulsen M, Erhardt DP, Molinaro DJ, Lin T-L, Currie CR (2007) Antagonistic bacterial interactions help shape host-symbiont dynamics within the fungus-growing ant-microbe mutualism. PLoS One 2(9):e960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro SB, Pagnocca FC, Victor SR, Bueno OC, Hebling MJ, Bacci M Jr, Silva OA, Fernandes JB, Vieira PC, Silva MFGF. (1998) Activity of sesame leaf extracts against the symbiotic fungus of Atta sexdens L. Ann Soc Entomol Brasil 27:421–426

    Article  Google Scholar 

  • Richard F-J, Poulsen M, Hefetz A et al (2007) The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants. Behav Ecol Sociobiol 61:1637–1649

    Article  Google Scholar 

  • Ridley P, Howse PE, Jackson CW (1996) Control of the behaviour of leaf-cutting ants by their “symbiotic” fungus. Experientia 52:631–635

    Article  CAS  Google Scholar 

  • Rockwood LL, Hubbell SP (1987) Host-plant selection, diet diversity, and optimal foraging in a tropical leafcutting ant. Oecologia 74:55–61

    Article  PubMed  CAS  Google Scholar 

  • Sainz-Borgo C, Leal B, Cabrera A, Hernandez JV (2013) Mandibular and postpharyngeal gland secretions of Acromyrmex landolti (Hymenoptera: Formicidae) as chemical cues for nestmate recognition. Rev Biol Trop 61:1261–1273

    Article  PubMed  Google Scholar 

  • Saverschek N, Roces F (2011) Foraging leafcutter ants: olfactory memory underlies delayed avoidance of plants unsuitable for the symbiotic fungus. Anim Behav 82:453–458

    Article  Google Scholar 

  • Saverschek N, Herz H, Wagner M, Roces F (2010) Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants. Anim Behav 79:689–698

    Article  Google Scholar 

  • Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott JJ, Budsberg KJ, Suen G et al (2010) Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PLoS One 5(3):e9922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seal JN, Tschinkel WR (2007) Complexity in an obligate mutualism: do fungus-gardening ants know what makes their garden grow? Behav Ecol Sociobiol 61:1151–1160

    Article  Google Scholar 

  • Sen R, Ishak HD, Estrada D, Dowd SD, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA 106:17 805–817

    Article  Google Scholar 

  • Silva PSD, Bieber AGD, Knoch TA et al (2013) Foraging in highly dynamic environments: leaf-cutting ants adjust foraging trail networks to pioneer plant availability. Ent Exp Appl 147:110–119

    Article  Google Scholar 

  • Suen G, Scott JJ, Aylward FO et al (2010) An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet 6(9):e1001129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thiele T, Kost C, Roces F, Wirth R (2014) Foraging leaf-cutting ants learn to reject Vitis vinifera ssp vinifera plants that emit herbivore-induced volatiles. J Chem Ecol 40:617–620

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiol 151:1809–1821

    Article  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2006) Oxylipins act as determinants of natural product biosynthesis and seed colonization in Aspergillus nidulans. Mol Microbiol 59:882–892

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118

    Article  PubMed  CAS  Google Scholar 

  • Van Bael SA, Estrada C, Wcislo WT (2011) Fungal-fungal interactions in leaf-cutting agriculture. Psyche (Stuttg) 2011:9

    Google Scholar 

  • Victor SR, Crisostoma FR, Bueno FC et al (2001) Toxicity of synthetic piperonyl compounds to leaf-cutting ants and their symbiotic fungus. Pest Manag Sci 57:603–608

    Article  PubMed  CAS  Google Scholar 

  • Weber NA (1966) Fungus growing ants. Science 153:587–604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for helpful feedback from anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. W. C. Green.

Additional information

Communicated by Marko Rohlfs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, P.W.C., Kooij, P.W. The role of chemical signalling in maintenance of the fungus garden by leaf-cutting ants. Chemoecology 28, 101–107 (2018). https://doi.org/10.1007/s00049-018-0260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-018-0260-x

Keywords

Navigation