Phenylpropanoids from Liparis nervosa and their in vitro antioxidant and α-glucosidase inhibitory activities

Abstract

Eleven phenylpropanoids were isolated from the whole grass of Liparis nervosa, an orchidaceous medicinal plant. Their structures were elucidated as (+)-Syringaresinol (1), (-)-Syringaresinol-4-O-β-D-glucopyranoside (2), Sinapaldehyde (3), Coniferyl aldehyde (4), Syringin (5), Sinapaldehye-4-O-β-D-glucoside (6), 2,3-dihydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone (7), C-Veratroylglycol (8), 7S, 7′S, 8R, 8′R-icariol A2 (9), Erigeside 2 (10), and Methylsyringin (11) by comparing the spectroscopic data and physicochemical constants from the isolated compounds with the data reported in the literature. Compounds 1 and 9 were found to have potent in vitro antioxidant activities in the DPPH and ABTS assays, and their IC50 values were lower than those of vitamin C. More importantly, compound 9 had a strong α-glucosidase inhibitory activity with an IC50 value of 43.76 ± 2.03 µM, which was much lower than that of acarbose (IC50 = 273.12 ± 11.84 µM), indicating that compound 9 has the potential for the development of hypoglycemic drugs. In conclusion, the present study suggests that phenylpropanoids may be the additional representative type of active constituents in L. nervosa, which provides a new line of evidence to understand this medicinal plant.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Editorial Committee of the Flora of China of Chinese Academy of Science: Flora of China (Volume 18). Beijing: Science Press; 1999. p 71.

  2. 2.

    Chinese Materia Medica Editorial Board of State Administration of Traditional Chinese Medicine: Chinese Materia Medica (Volume 8). Shanghai: Shanghai Science & Technology Press; 1999. p 736–7.

  3. 3.

    Dong YF, Li WY, Ye RC, Wang L. Antimicrobial and antioxidant activities of total alkaloids of Liparis nervosa (Thunb.) Lindl. J Sichuan Univ (Nat Sci Edi). 2010;47:669–73. https://doi.org/10.3969/j.issn.0490-6756.2010.03.048.

  4. 4.

    Huang S, Zhou X, Wang C, Wang Y, Xiao F, Shan L, et al. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages. Phytochemistry. 2013;93:154–61. https://doi.org/10.1016/j.phytochem.2013.03.009.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Liu L, Yin QM, Zhang XW, Wang W, Dong XY, Yan X, et al. Bioactivity-guided isolation of biphenanthrenes from Liparis nervosa. Fitoterapia. 2016;115:15–8. https://doi.org/10.1016/j.fitote.2016.09.006.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Song Q, Zhao Q, Gou X, Chen F, Yan J, Guo X, et al. Study on hemostasis effect of Liparis nervosa (Thunb.) Lindl. J Chengdu Univ (Nat Sci Edi). 2013;32:27–8. 31.

  7. 7.

    Huang S, Zhong DX, Shan LH, Zheng YZ, Zhang ZK, Bu YH, et al. Three new pyrrolizidine alkaloids derivatives from Liparis nervosa. Chin Chem Lett. 2016;27:757–60. https://doi.org/10.1016/j.cclet.2016.01.003.

    CAS  Article  Google Scholar 

  8. 8.

    Chen L, Huang S, Li CY, Gao F, Zhou XL. Pyrrolizidine alkaloids from Liparis nervosa with antitumor activity by modulation of autophagy and apoptosis. Phytochemistry. 2018;153:147–55. https://doi.org/10.1016/j.phytochem.2018.06.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Huang S, Pan MF, Zhou XL, Zhou ZL, Wang CJ, Shan LH, et al. Five new nervogenic acid derivatives from Liparis nervosa. Chin Chem Lett. 2013;24:734–6. https://doi.org/10.1016/j.cclet.2013.04.043.

    CAS  Article  Google Scholar 

  10. 10.

    Huang S, Zhou X, Wang C, Wang H, Wang Y, Shan L, et al. New nervogenic acid derivatives from Liparis nervosa. Planta Med. 2013;79:281–7. https://doi.org/10.1055/s-0032-1328109.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Hong J. Role of natural product diversity in chemical biology. Curr Opin Chem Biol. 2011;15:350–4. https://doi.org/10.1016/j.cbpa.2011.03.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Park JH, Yeon SW, Cho JG, Lee DY, Kim YS, Black NI. Lignans from silkworm droppings and their promotional activities on heme oxygenase-1 (HO-1). J Korean Soc Appl Biol Chem. 2010;53:734–9. https://doi.org/10.3839/jksabc.2010.111.

    CAS  Article  Google Scholar 

  13. 13.

    Jung MJ, Kang SS, Jung HA, Kim GJ, Choi JS. Isolation of flavonoids and a cerebroside from the stem bark of Albizzia julibrissin. Arch Pharmacal Res. 2004;27:593–9. https://doi.org/10.1007/BF02980155.

    CAS  Article  Google Scholar 

  14. 14.

    Cao YG, Zheng XK, Qi M, Li F, Ren YJ, Guo MH, et al. Phenolic constituents from fruit of Gardenia jasminosides var. Radicans. Chin Tradit Herb Drugs. 2017;48:4615–9. https://doi.org/10.7501/j.issn.0253-2670.2017.22.004.

    Article  Google Scholar 

  15. 15.

    Yao JL, Fu HZ, Zhou ZQ, Lin KP, Luo YH. Chemical constituents of ethyl acetate-soluble from Xianzhuli. J Chin Med Mater. 2018;41:2354–8. https://doi.org/10.13863/j.issn1001-4454.2018.10.020.

    Article  Google Scholar 

  16. 16.

    Liu J, Li CJ, Yang JZ, Ma J, Zhang DM. Chemical constituents from stems of Clausena lansium. Chin Tradit Herb Drugs. 2016;47:32–7. https://doi.org/10.7501/j.issn.0253-2670.2016.01.006.

    CAS  Article  Google Scholar 

  17. 17.

    Xu R, Gao YH, Wei ZX, Zhu SH. Chemical constituents in bark of Ilex rotunda (I). Chin Tradit Herb Drugs. 2011;42:2389–93.

    CAS  Google Scholar 

  18. 18.

    Lee TH, Kuo YC, Wang GJ, Kuo YH, Chang CI, Lu CK, et al. Five New Phenolics from the Roots of Ficus beecheyana. J Nat Prod. 2002;65:1497–500. https://doi.org/10.1021/np020154n.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wang CH, Wei PL, Yan SK, Jin HZ, Zhang WD. Chemical constituents from the ethyl acetate portion of Inula wissmanniana. Nat Prod Res Dev. 2014;26:33–7. https://doi.org/10.16333/j.1001-6880.2014.01.002.

    Article  Google Scholar 

  20. 20.

    Yamauchi H, Kakuda R, Yaoita Y, Machida K, Kikuchi M. Two new glycosides from the whole plants of Glechoma hederacea L. Chem Pharm Bull. 2007;55:346–7. https://doi.org/10.1002/chin.200727163.

    CAS  Article  Google Scholar 

  21. 21.

    Wei ZY, Lu JJ, Jin CS, Xia H. Chemical constituents from n-butanol extracts of Dendrobium officinale. Mod Chin Med. 2013;15:1042–5. https://doi.org/10.13313/j.issn.1673-4890.2013.12.014.

    CAS  Article  Google Scholar 

  22. 22.

    Kim MR, Moon HT, Lee DG, Woo ER. A new lignan glycoside from the stem bark of Styrax japonica S. et Z. Arch Pharmacal Res. 2007;30:425–30. https://doi.org/10.1007/BF02980215.

    CAS  Article  Google Scholar 

  23. 23.

    Ghani U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack. Eur J Med Chem. 2015;103:133–62. https://doi.org/10.1016/j.ejmech.2015.08.043.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zhang S, Huang Y, Li Y, Wang Y, He X. Anti-neuroinflammatory and antioxidant phenylpropanoids from Chinese olive. Food Chem. 2019;286:421–7. https://doi.org/10.1016/j.foodchem.2019.02.031.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zhang X, Liu F, Feng ZM, Yang YN, Jiang JS, Zhang PC. Bioactive phenylpropanoid esters of sucrose and anthraquinones from Polygonum cuspidatum. Fitoterapia. 2020;146:104673 https://doi.org/10.1016/j.fitote.2020.104673.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dai LY, Yin QM, Qiu JK, Zhang ZY, Li G, Huang MN, et al. Goodyera A, a new butenolide with significant BchE inhibitory activity from Goodyera schlechtendaliana. Nat Prod Res. 2020: [Online first article]. https://doi.org/10.1080/14786419.2020.1744142..

  27. 27.

    Yang X, Chen L, Liu C, Qin Y, Tang Y, Li S. Rapid screening, separation, and detection of α-glucosidase inhibitors from Hedyotis diffusa by ultrafiltration–liquid chromatography tandem mass spectrometry–high-speed countercurrent chromatography. Med Chem Res. 2017;26:3315–22. https://doi.org/10.1007/s00044-017-2024-5.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by Qinglan Project of Jiangsu Province, High-end Talents Supporting Project of Yangzhou University, Qinglan Project of Yangzhou University (20180210) and University Student Academic Science and Technology Innovation Fund of Yangzhou University (X20200738, X20200763).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Liang Liu or Xianwen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zou, M., Yin, Q. et al. Phenylpropanoids from Liparis nervosa and their in vitro antioxidant and α-glucosidase inhibitory activities. Med Chem Res (2021). https://doi.org/10.1007/s00044-021-02709-6

Download citation

Keywords

  • Liparis nervosa
  • Phenylpropanoids
  • Antioxidant activity
  • α-glucosidase inhibitory activity