Skip to main content

Advertisement

Log in

In silico screening of anticholinesterase alkaloids for cyclooxygenase-2 (COX-2) and matrix metalloproteinase 8 (MMP-8) inhibitory potentials as multi-target inhibitors of Alzheimer’s disease

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with yet no effective drug treatment; although several anticholinesterases are being used to offer relief from the symptoms of the disease. Recent studies have indicated that over-activation of cyclooxygenase-2 (COX-2) and matrix metalloproteinase-8 (MMP-8) may cause neuronal death in the brain of AD subjects, suggesting that inhibition of COX-2 and MMP-8 may be of therapeutic value in the management of AD. Therefore, it is important and rational to investigate new agents with anticholinesterase, COX-2 and MMP-8 inhibitory activities. In this study, molecular docking study was performed with earlier identified anticholinesterase alkaloids to search for compounds with high affinity for COX-2 and MMP-8. Molecular docking was done using Blind Docking Server while ligand-protein molecular interaction of compounds with remarkable inhibitory characteristics against COX-2 and MMP-8 were viewed with PyMOL. Alkaloids with high binding affinity and remarkable binding interaction with the target proteins were subjected to drug likeness investigation based on absorption-distribution-metabolism-excretion (ADME) properties using the Swiss online ADME web tool. Nine alkaloids (haloxysterol A, haloxysterol B, haloxysterol C, haloxysterol D, sarcodine, isosarcodine, axillaridine A, sarsalignenone and voacangine hydroxyindolenine) showed high affinities for both COX-2 and MMP-8. Thus, this in silico study identified 9 orally drugable, anticholinesterase alkaloids with COX-2 and MMP-8 multi-target activities that could be studied further as agents against AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed F, Ghalib RM, Sasikala P, Ahmed KM (2013) Cholinesterase inhibitors from botanicals. Pharm Rev 7(14):121

    Article  CAS  Google Scholar 

  • Ahmed E, Nawaz SA, Malik A, Choudhary MI (2006) Isolation and cholinesterase-inhibition studies of sterols from Haloxylon recurvum. Bioorg Med Chem Lett 16:573–580

    Article  CAS  PubMed  Google Scholar 

  • Aisen PS (2002) Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J Pain Symptom Manag 23(4):S35–S40

    Article  CAS  Google Scholar 

  • Andrade MT, Lima JA, Pinto AC, Rezende CM, Carvalho MP, Epifanio RA (2005) Indole alkaloids from Tabernaemontana australis (Müell. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorg Med Chem 13(12):4092–4095

    Article  CAS  PubMed  Google Scholar 

  • Ata A, Iverson CD, Kalhari KS, Akhter S, Betteridge J, Meshkatalsadat MH, Orhan I, Sener B (2010) Triterpenoidal alkaloids from Buxus hyrcana and their enzyme inhibitory, anti-fungal and anti-leishmanial activities. Phytochemistry 71:1780–1786

    Article  CAS  PubMed  Google Scholar 

  • Atta-ur-Rahman ZU, Khalid A, Anjum S, Khan MR, Choudhary MI (2002) Pregnane-type steroidal alkaloids of Sarcococca saligna: A new class of cholinesterase inhibitors. Helv Chim Acta 85:678–688

    Article  CAS  Google Scholar 

  • Camps P, Formosa X, Galdeano C, Gómez T, Muñoz-Torrero D, Ramírez L, Viayna E, Gómez E, Isambert N, Lavilla R, Badia A (2010) Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifyinganti-Alzheimer drug candidates. Chem-biol Inter 187(1–3):411–415

    Article  CAS  Google Scholar 

  • Choudhary MI (2001) Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl Chem 73(3):555–560

    Article  Google Scholar 

  • Daina A, Michielin O, Zoete V (2014) ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54(12):3284–3301

    Article  CAS  PubMed  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  • Daina A, Zoete V (2016) A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 11(11):1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Acqua S (2013) Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer disease. Bot: Targets Ther 3:19–28

    Google Scholar 

  • Elgorashi EE, Stafford GI, Van Staden J (2004) Acetylcholinesterase enzyme inhibitory effects of Amaryllidaceae alkaloids. Planta Med 70(03):260–262

    Article  CAS  PubMed  Google Scholar 

  • Giovannini MG, Scali C, Biotech S, Bellucci A, Pepeu G (2003) Experimental brain inflammation and neurodegeneration as model of Alzheimer’s disease: Protective effects of selective COX-2 inhibitors. Int J Immunopathol Pharm 16(2):19–28

    Google Scholar 

  • Gleeson M, Hersey A, Hannongbua S (2011) In silico ADME Models: A General Assessment of their Utility in Drug Discovery Applications. Curr Top Med Chem 11(4):358–381

    Article  CAS  PubMed  Google Scholar 

  • Goodwin JT (2005) In silico Predictions of Blood-Brain Barrier Penetration: Considerations to “Keep in Mind.”. J Pharm Exp Ther 315(2):477–483

    Article  CAS  Google Scholar 

  • Hoerr R, Noeldner M (2002) Ensaculin (KA-672. HCl): A Multitransmitter Approach to Dementia Treatment. CNS Drug Rev 8:143–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howes MJ, Houghton PJ (2009) Acetylcholinesterase inhibitors of natural origin. Int J Biomed Pharm Sci 3(SI1):67–86

    Google Scholar 

  • Hu X, Dong W, Cui Z, Gao C, Yu Z, Yuan Q, Min Z (2018) In silico identification of AChE and PARP-1 dual-targeted inhibitors of Alzheimer’ s disease. J Mol Model 24:150–158

    Article  CAS  Google Scholar 

  • Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Bio Sci 14(3):341

    Article  CAS  Google Scholar 

  • Karczmar A (1998) Invited review. Anticholinesterases: Dramatic aspects of their use and misuse. Neurochem Int 32(5-6):401–411

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh S, Gaudig M, Van Baelen B, Adami M, Delgado A, Guzman C, Jedenius E, Schäuble B (2011) Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol Scand 124:302–308

    Article  CAS  PubMed  Google Scholar 

  • Khalid A, Zaheer-Ul-Haq, Ghayur MN, Feroz F, Atta-Ur-Rahman Gilani AH, Choudhary MI (2004) Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids. J Steroid Biochem Mol Biol 92(5):477–484

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Kim SH, Yang WM (2014) Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease. Planta Med 80:1249–1258

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Lee KT, Baek NI, Kim SH, Park HW, Lim JP, Shin TY, Eom DO, Yang JH, Eun JS (2004) Acetylcholinesterase inhibitors from the aerial parts of Corydalis speciosa. Arch Pharmacal Res 27(11):1127

    Article  CAS  Google Scholar 

  • Krátký M, Štěpánková Š, Vorčáková K, Švarcová M, Vinšová J, Decker M (2016) Novel cholinesterase inhibitors based on O-aromatic N, N-disubstituted carbamates and thiocarbamates. Molecules 21(2):191

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6(12):81. 6(12):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Li Q, Gu K, Zhu J, Jiang X, Chen Y, Sun H (2017) Design of multi-target agents for the treatment of Alzheimer’s disease based on tacrine. Curr Top Med Chem 17(27):3000–3016

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharm Toxicol Methods 44(1):235–249

    Article  CAS  Google Scholar 

  • López S, Bastida J, Viladomat F, Codina C (2002) Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci 71(21):2521–9

    Article  PubMed  Google Scholar 

  • Mohsen UA (2012) Studies on imidazopyridine derivatives as acetylcholinesterase inhibitors. Clin Exp Health Sci 2(3):119

    CAS  Google Scholar 

  • Möller HJ, Graeber M (1998) The case described by Alois Alzheimer in 1911 Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur Arch Psychiatry Clin Neurosci 248:111–122

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14(4):289–300

    Article  CAS  PubMed  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: An Open chemical toolbox. J Chemin- 3(10):33

    Article  CAS  Google Scholar 

  • Orhan IE, Orhan G, Gurkas E (2011) An Overview on Natural Cholinesterase Inhibitors - A Multi-Targeted Drug Class - and Their Mass Production. Mini-Rev Med Chem 11:836–842

    Article  CAS  PubMed  Google Scholar 

  • Orhan I, Şener B, Choudhary MI, Khalid A (2004) Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 91(1):57–60

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2009) Alzheimer’s disease drug development and the problem of the blood-brain barrier. Alzheimer’s Dement 5(5):427–432

    Article  Google Scholar 

  • Park CH, Kim SH, Choi W, Lee YJ, Kim JS, Kang SS, Suh YH (1996) Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med 62(05):405–9

    Article  CAS  PubMed  Google Scholar 

  • Pasinetti GM, Aisen PS (1998) Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87(2):319–24

    Article  CAS  PubMed  Google Scholar 

  • Paula A, Belén M, Julia M, Paola N, Cavallaro V (2013) Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy. Curr Neuropharmacol 11:388–413

    Article  Google Scholar 

  • Peress N, Perillo E, Zucker S (1995) Localization of tissue inhibitor of matrix metalloproteinases in Alzheimer’s disease and normal brain. J Neuropathol ExpNeurol 54:16–22

    Article  CAS  Google Scholar 

  • Plummer SM, Holloway KA, Manson MM (1999) Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kB activation via the NIK/IKK signalling complex. Oncogene 18:6013–6020

    Article  CAS  PubMed  Google Scholar 

  • Pochetti G, Montanari R, Gege C, Chevrier C, Taveras AG, Mazza F (2009) Extra binding region induced by non-zinc chelating inhibitors into the S1′ subsite of matrix metalloproteinase 8 (MMP-8). J Med Chem 52:1040–1049

    Article  CAS  PubMed  Google Scholar 

  • Rasool M, Arif Malik SW, Tul-Ain Q, Jafar TH, Rasool R, Kalsoom A, Ghafoor MA, Sehgal SA, Gauthaman K, Naseer MI, Al-Qahtani MH (2018) In-Silico Characterization and In-vivo Validation of Albiziasaponin-A, Iso-Orientin, and Salvadorin Using a Rat Model of Alzheimer’s Disease. Front Pharm 9:1–15

    Article  CAS  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8(2):205–216

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, García JM (2012) High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinforma 13(14):S13

    Article  CAS  Google Scholar 

  • Selvaraj C, Tripathi SK, Reddy KK, Singh SK (2011) Tool development for Prediction of pIC 50 values from the IC 50 values-A pIC 50 value calculator. Curr Trends Biotechnol Pharm 1(5):2

    Google Scholar 

  • Song JH, Yu JT, Tan L (2015) Brain-Derived Neurotrophic Factor in Alzheimer’s Disease: Risk, Mechanisms, and Therapy. Mol Neurobiol 52(3):1477–1493

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto H, Yamanishi Y, Iimura Y, Kawakami Y (2000) Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr Med Chem 7:303–339

    Article  CAS  PubMed  Google Scholar 

  • Sultana N, Sultana R (2009) A new lanostane triterpene from skimmia laureola. Z Nat 64(4):459–463

    CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • ul Haq Z, Uddin R (2011) Structure Based 3D-QSAR Studies on Cholinesterase Inhibitors. In Alzheimer’s Disease Pathogenesis-Core Concepts, Shifting Paradigms and Therapeutic Targets. IntechOpen https://doi.org/10.5772/17891

  • Veber DF, Johnson SR, Cheng H, Smith BR, Ward KW, Kopple KD (2002) Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan R, Ji E, Kim SY (2015) Phytochemicals that regulate neurodegenerative disease by targeting neurotrophins: a comprehensive review. BioMed Res Int 2015:814068. https://doi.org/10.1155/2015/814068

  • Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, Mhatre SD, Brown H, Ko N, Zagol-Ikapitte I, van der Hart M (2016) Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 139(7):2063–2081

    Article  PubMed  PubMed Central  Google Scholar 

  • Yong VW, Power C, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2(7):502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ishola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishola, A.A., Adewole, K.E. In silico screening of anticholinesterase alkaloids for cyclooxygenase-2 (COX-2) and matrix metalloproteinase 8 (MMP-8) inhibitory potentials as multi-target inhibitors of Alzheimer’s disease. Med Chem Res 28, 1704–1717 (2019). https://doi.org/10.1007/s00044-019-02407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02407-4

Keywords

Navigation