Medicinal Chemistry Research

, Volume 27, Issue 6, pp 1690–1704 | Cite as

Synthesis of new C-dimethylated chalcones as potent antitubercular agents

  • Rambabu Anandam
  • Surender Singh Jadav
  • Vasu Babu Ala
  • Mohamed Jawed Ahsan
  • Hari Babu Bollikolla
Original Research


A new class of C-dimethylated-chalcones (9aq) were synthesized by using 2-hydroxy-3,5-dimethyl-4,6-dimethoxy acetophenone as a key intermediate. The compounds were screened for anti-tubercular activity against Mycobacterium tuberculosis strain (H37Rv) by Microplate Alamar Blue assay (MABA) method at a concentration of 100–0.8 µg/mL. The chalcones, 9a, 9b, 9c, 9k, 9o, and 9p were found to have higher antitubercular activity than the standard drugs, while the remaining compounds showed moderate activity. The antitubercular activity of the chalcones, 9b (MIC90 = 3.98 µM) and 9o (MIC90 = 3.84 µM) was found to be more than two-fold more active than the standard drugs, streptomycin (MIC90 = 10.75 µM) and ciprofloxacin (MIC90 = 9.43 µM), while their antitubercular activity was found to be more than six-fold more active than pyrazinamide (MIC90 = 25.38 µM). Further, the molecular docking studies employing Mycobacterium tuberculosis protein tyrosine phosphatase (MtbPtp) was carried out to observe docking scores.


Chalcones Mycobacterium tuberculosis Alamar Blue assay Anti-tuberculosis H37Rv Tyrosine phosphatase 



The authors are highly thankful to Dr. G.V. Subbaraju, CEO, Natsol Labs, Visakhapatnam for constant support and Prof. G. Rambabu, Gitam University, Hyderabad for helpful suggestions in docking studies. The authors also thank UGC for the financial assistance (F.No.39-752/2011).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

44_2018_2183_MOESM1_ESM.docx (4.8 mb)
Supplementary Information


  1. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322CrossRefPubMedGoogle Scholar
  2. Balaji NV, Hari Babu B, Subbaraju GV, Nagasree KP, Kumar MMK (2017) Synthesis, screening and docking analysis of hispolon analogs as potential antitubercular agents. Bioorg Med Chem Lett 27:11–15CrossRefPubMedGoogle Scholar
  3. Biava M, Porretta GC, Poce G, Logu A, Meleddu R, Rossi E, Manetti F, Botta F (2009) 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur J Med Chem 44:4734–4738CrossRefPubMedGoogle Scholar
  4. Chen YH, Wang WH, Wang YH, Lin ZY, Wen CC, Chern CY (2013) Evaluation of the anti-inflammatory effect of chalcone and chalcone analogues in a Zebrafish model. Molecules 18:2052–2060CrossRefPubMedGoogle Scholar
  5. Chiaradia LD, Martins PGA, Cordeiro MNS, Guido RVC, Ecco G, Andricopulo AD, Yunes RA, Vernal J, Nunes RJ, Terenzi H (2012) Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J Med Chem 55:390–402CrossRefPubMedGoogle Scholar
  6. Chiaradia LD, Mascarello A, Purificação M, Vernal J, MNS Cordeiro, Zenteno ME, Villarino A, Nunes RJ, Yunes RA, Terenzi H (2008) Synthetic chalconas as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg Med Chem Lett 18:6227–6230CrossRefPubMedGoogle Scholar
  7. Collins L, Franzblau SG (1997) MicroplateAlamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41:1004–1009PubMedPubMedCentralGoogle Scholar
  8. Eddarir S, Cotelle N, Bakkour Y, Rolando C (2003) An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Lett 44:5359–5363CrossRefGoogle Scholar
  9. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplateAlamar Blue assay. J Clin Microbiol 36(2):362–366PubMedPubMedCentralGoogle Scholar
  10. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH, Neves BJ (2017) Chalcone derivatives: promising starting points for drug design. Molecules 22:1210CrossRefGoogle Scholar
  11. Greenstein AE, Grundner C, Echols N, Gay LM, Lombana TN, Miecskowski CA, Pullen KE, Sung PY, Alber T (2005) Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J Mol Microbiol Biotechnol 9:167–181CrossRefPubMedGoogle Scholar
  12. He Y, Xu J, Yu Z, Gunawan AM, Wu L, Wang L, Zhang ZY (2013) Discovery and evaluation of novel inhibitors of mycobacterium protein tyrosine phosphatase B from the 6-hydroxybenzofuran-5-carboxylic acid scaffold. J Med Chem 56:832–842CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kasthuri JK, Jadav SS, Thripuram VD, Gundabolu UR, Ala VB, Kolla JN, Jayaprakash V, Ahsan MJ, Bollikolla HB (2017) Synthesis, characterization, docking and study of inhibitory action of some novel C-alkylated chalcones on 5-LOX enzyme. Chem Sel 2:8771–8778Google Scholar
  14. Koul A, Herget T, Klebl B, Ullrich A (2004) Interplay between mycobacteria and host signaling pathways. Nat Rev Microbiol 2:189–202CrossRefPubMedGoogle Scholar
  15. Leon-Gonzalez AJ, Acero N, Munoz-Mingarro D, Navarro I, Martin-Cordero C (2015) Chalcones as promising lead compounds on cancer therapy. Curr Med Chem 22:3407–3425CrossRefPubMedGoogle Scholar
  16. Lin YM, Zhou Y, Flavin MT, Zhow LM, Nie W, Chen FC (2002) Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem 10:2795–2802CrossRefPubMedGoogle Scholar
  17. Mahapatra DK, Asati V, Bharti SK (2015) Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives. Eur J Med Chem 92:839–865CrossRefPubMedGoogle Scholar
  18. Mukherjee S, Kumar V, Prasad AK, Raj HG, Brakhe ME, Olsen CE, Jain SC, Parmar VP (2001) Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorg Med Chem 9:337–375CrossRefPubMedGoogle Scholar
  19. Narender T, Reddy KP (2007) A simple and highly efficient method for the synthesis of chalcones by using borontriĘuoride-etherate. Tetrahedron Lett 48:3177–3180CrossRefGoogle Scholar
  20. Oliveira KN, Chiaradia LD, Martins PGA, Mascarello A, Cordeiro MN, Guido RVC, Andricopulo AD, Yunes RA, Nunes RJ, Vernal J, Terenzi H (2011) Sulfonyl-hydrazones of cyclic imides derivatives as potent inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B (PtpB). Med Chem Comm 2:500–504CrossRefGoogle Scholar
  21. Prasad YR, Rao AL, Rambabu R (2008) Synthesis and antimicrobial activity of some chalcone derivatives. E-J Chem 5:461–466CrossRefGoogle Scholar
  22. Prasanna P, Balamurugan K, Perumal S, Yogeeswari P, Sriram D (2010) A regio- and stereoselective 1,3-dipolar cycloaddition for the synthesis of novel spiro-pyrrolothiazolyloxindoles and their antitubercular evaluation. Eur J Med Chem 45:5653–5661CrossRefPubMedGoogle Scholar
  23. Rawls KA, Lang PT, Takeuchi J, Imamura S, Baguley TD, Grundner C, Alber T, Ellman JA (2009) Fragment-based discovery of selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg Med Chem Lett 19:6851–6854CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sharma M, Chaturvedi V, Manju YK, Bhatnagar S, Srivastava K, Puri SK, Chauhan PMS (2010) Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur J Med Chem 44:2081–2091CrossRefGoogle Scholar
  25. Sharma V, Kumar V, Kumar P (2013) Heterocyclic chalcone analogues as potential anticancer agents. Anti-Cancer Agents Med Chem 13:422–432Google Scholar
  26. Sivakumar PM, Priya S, Doble M (2009) Synthesis, biological evaluation, mechanism of action and quantitative structure–activity relationship studies of chalcones as antibacterial agents. Chem Biol Drug Des 73:403–415CrossRefPubMedGoogle Scholar
  27. Sivakumar PM, Seenivasan SP, Kumar V, Doble M (2007) Synthesis, antimycobacterial activity evaluation, and QSAR studies of chalcone derivatives. Bioorg Med Chem Lett 17:1695–1700CrossRefPubMedGoogle Scholar
  28. Soellner MB, Rawls KA, Grundner C, Alber T, Ellman JA (2007) Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J Am Chem Soc 129:9613–9615CrossRefPubMedGoogle Scholar
  29. Vasu Babu A, Rambabu A, Giriprasad PV, Rao RSC, Hari Babu B (2013) Synthesis of (±)-pisonivanone and other analogs as potent antituberculosis agents. J Chem 2013:9. Article ID 9612012013CrossRefGoogle Scholar
  30. Vasu Babu A, Ramesh N, Trimurthulu G, Hari Babu B (2014) Synthesis of C-methyl chalcones as HIV-integrase inhibitors-computational approach. Med Chem Res 23(2):877–881CrossRefGoogle Scholar
  31. Vintonyak VV, Antonchick AP, Rauh D, Waldmann H (2009) The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 13:272–283CrossRefPubMedGoogle Scholar
  32. Vintonyak VV, Warburg K, Over B, Hübel K, Rauh D, Waldmann H (2011) Identification and further development of thiazolidinonesspiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatise B. Tetrahedron 67:6713–6729CrossRefGoogle Scholar
  33. Zhang ZY (2017) Drugging the undruggable: therapeutic potential of targeting protein tyrosine phosphatases. Acc Chem Res 50:122–129CrossRefPubMedGoogle Scholar
  34. Zhou B, He Y, Zhang X, Xu J, Luo Y, Wang Y, Franzblau SG, Yang Z, Chan RJ, Liu Y, Zheng J, Zhang ZY (2010) Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci USA 107:4573–4578CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhou B, Xing C (2015) Diverse molecular targets for chalcones with varied bioactivities. Med Chem 5:388–404CrossRefGoogle Scholar
  36. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z (2017) Chalcone: a privileged structure in medicinal chemistry. Chem Rev 117:7762–7810CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rambabu Anandam
    • 1
  • Surender Singh Jadav
    • 2
  • Vasu Babu Ala
    • 3
  • Mohamed Jawed Ahsan
    • 4
  • Hari Babu Bollikolla
    • 1
  1. 1.Department of ChemistryAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of Chemistry, School of TechnologyGITAM UniversityHyderabadIndia
  3. 3.Department of Science & HumanitiesQIS College of Engineering & TechnologyOngoleIndia
  4. 4.Department of Pharmaceutical ChemistryMaharishi Arvind College of PharmacyJaipurIndia

Personalised recommendations