Medicinal Chemistry Research

, Volume 27, Issue 6, pp 1599–1608 | Cite as

Synthesis, evaluation, and molecular properties prediction of substituted cinnamoylpiperazine derivatives as potential antinociceptive and anticonvulsive agents

  • Gummalla Prasanthi
  • Kvsrg Prasad
  • Koganti Bharathi
Original Research


A series of novel cinnamoylpiperazine derivatives (5a5l) were synthesized as potential antinociceptive, and anticonvulsive agents. Various heterocyclic systems like piperidine, morpholine, piperazine, and N-arylpiperazine were combined with cinnamoyl or methylenedioxy cinnamoyl moieties to obtain a series of constrained analogs of cinnamides. Of these, compound 5e possessing 4-fluorophenyl substitution on the piperazine ring exhibited good antinociceptive activity in capsaicin and formalin-induced nociception methods, and also significant anticonvulsant activity in pentylenetetrazole and maximal electroshock-induced seizure methods. Further, all the derivatives were studied for molecular and preadmet properties. The activities of compound 5e were supported by molecular and preadmet properties for its in silico oral bioavailability and drug-likeness.


Cinnamoylpiperazines Capsaicin-induced nociception anticonvulsant activity drug-likeness 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abou-Seri SA, Abouzid K, Abouel-Ella DA (2011) Molecular modelling study and synthesis of quinazolinone-arylpiperazine derivatives as α1-adrenoreceptor antagonists. Eur J Med Chem 46:647–658CrossRefPubMedGoogle Scholar
  2. Ahsan MJ, GovindaSamy J, Khalilullah H, Nomani MS, Saraswat P, Gaur R, Singh A (2011) Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents. Bioorg Med Chem Lett 21:7246–7250CrossRefPubMedGoogle Scholar
  3. Azam F, El-gnidi BA, Alkskas IA (2010) Combating oxidative stress in epilepsy: Design, synthesis, quantum chemical studies and anticonvulsant evaluation of 1-(substituted benzylidine/ethylidene)-4-(naphthylen-1-yl)semicarbazides. Eur J Med Chem 45:2817–2826CrossRefPubMedGoogle Scholar
  4. Balsamo A, Crotti P, Lapucci A, Macchia B, Macchia F, Cuttica A, Passerini N (1981) Structure-activity relationship in cinnamamides. 3. Synthesis and anticonvulsant activity evaluation of some derivatives of (E)- and (Z)-m-(trifluoromethyl)cinnamamide. J Med Chem 24(5):525–532CrossRefPubMedGoogle Scholar
  5. Baruah PK, Dinsmore J, King AM, Salome C, Ryck MD, Kaminski R, Provins L, Kohn H (2012) Synthesis, anticonvulsant activity and neuropathic pain-attenuating activity of N-benzyl 2-amino-2-(hetero)aromatic acetamides. Bioorg Med Chem 20:3551–3564CrossRefPubMedGoogle Scholar
  6. De P, Baltas M, Bedos-Belval (2011) Cinnamicacid derivatives as anticancer agents-a review. Curr Med Chem 18:1672–1703CrossRefPubMedGoogle Scholar
  7. Dickenson AH, Matthews EA, Suzuki R (2002) Neurobiology of neuropathic pain: mode of action of anticonvulsants. Eur J Pain 5:51–60CrossRefGoogle Scholar
  8. Doherty EM, Fotsch C, Bo Y, Chakrabarti PP, Chen N, Gavva N, Han N, Kelly MG (2005) Discovery of potent, orally available vanilloid receptor-1 antagonist. Structure-activity relationship of N-aryl cinnamides. J Med Chem 48(1):71–90CrossRefPubMedGoogle Scholar
  9. Eisenberg E, Lurie Y, Braker C, Daoud D, Ishay A (2001) Lamotrigine reduces painful diabetic neuropathy: a randomized, controlled study. Neurology 57:505–509CrossRefPubMedGoogle Scholar
  10. Gunia A, Waszkielewicz AM, Cegla M, Marona H (2012) Preliminary evaluation of anticonvulsant activity of some aminoalkanol and amino acid cinnamic acid derivatives. Lett Drug Des Disc 9(1):37–43CrossRefGoogle Scholar
  11. Gunthorpe MJ, Rami HK, Jerman JC, Smart D, Gill CH, Soffin EM, Luis Hannan S, Lappin SC (2004) Identification and characterisation of SB-366791, a potent and selective vanilliod receptor (VR1/TRPV1) antagonist. Neuropharmacology 46(1):133–149CrossRefPubMedGoogle Scholar
  12. Kakwani MD, Suryavanshi P, Ray M, Rajan MGR, Majee S, Samad A, Devarajan P, Degani MS (2011) Design, synthesis and antimycobacterial activity of cinnamide derivatives: a molecular hybridizational approach. Bioorg Med Chem Lett 21:1997–1999CrossRefPubMedGoogle Scholar
  13. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25Google Scholar
  14. Menenzes JCJMDS, Kamat SP, Cavaleiro JAS, Gaspar A, Garrido J, Borges F (2011) Synthesis and antioxidant activity of long chain alkyl hydroxycinnamates. Eur J Med Chem 46:773–777CrossRefGoogle Scholar
  15. Milano J, Oliveira SM, Rossato MF, Sauzem PD, Machado P, Beck P, Zanatta N, Martins MA, Mello CF, Rubin MA, Ferreira J, Bonacorso HG (2008) Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. Eur J Pharmacol 581(1–2):86–96CrossRefPubMedGoogle Scholar
  16. Molinspiration Cheminformatics. Web-enabled software for large-scale calculation of molecular properties and database searches. Free online molecular descriptor calculations. Available from Accessed 22 Nov 2015
  17. Obniska J, Byrtus H, Kaminski KS, Pawlowski M, Szczesio M, Wojciechowska JK (2010) Design, synthesis, and anticonvulsant activity of new N-mannich bases derived from spirosuccinimides and spirohydantoins. Bioorg Med Chem 18:6134–6142CrossRefPubMedGoogle Scholar
  18. Pomonis JD, Harrison JE, Bristol DR, Valenzano KJ, Walker K (2003) N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carboxamide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In-vivo characterization in rat models of inflammatory and neuropathic pain. J Pharmacol Exp Ther 306(1):387–393CrossRefPubMedGoogle Scholar
  19. Prasanthi G, Prasad KVSRG, Bharathi K (2013) Design, synthesis and evaluation of dialkyl 4-(benzo[d][1,3] dioxol-6-yl)-1,4-dihydro-2,6-dimethyl-1-substituted pyridine-3,5-dicarboxylates as potential anticonvulsants and their molecular properties prediction. Eur J Med Chem 66:516–525CrossRefPubMedGoogle Scholar
  20. PreADMET is a web-based application for predicting ADME data and building drug-like library using in silico method. Available from Accessed 2015 Nov 28
  21. Rapacz A, Rybka S, Obniska J, Sałat K, Powroźnik B, Pękala E, Filipek B (2016) Evaluation of anticonvulsant and antinociceptive properties of new N-Mannich bases derived from pyrrolidine-2,5-dione and 3-methylpyrrolidine-2,5-dione. Naunyn Schmiedeberg Arch Pharmacol 389:339–348CrossRefGoogle Scholar
  22. Rossato MF, Trevisan G, Walker CIB, Klafke JZ, de Oliveira AP, Villarinho JG, Zanon RB, Royes LFF, Athayde ML, Gomez MV, Ferreira J (2011) Eradictyol: a flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem Pharmacol 81:544–551CrossRefPubMedGoogle Scholar
  23. Salat K, Moniczewski A, Salat R, Janaszek M, Filipek B, Malaska B, Wieckowski K (2012) Analgesic, anticonvulsant and antioxidant activities of 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one dihydrochloride in mice. Pharmacol Biochem Behav 101:138–147CrossRefPubMedGoogle Scholar
  24. Subudhi BB, Panda PK, Swain SP, Sarangi P (2009) Synthesis, characterization and anticonvulsant evaluation of some 1,4-dihydropyridines and 3,5-(substituted)oxocarbamyl-1,4-dihydro-2,6-dimethyl-N-(2-(4-sulfamoyl phenylamino)-acetyl)-4-substitutedpyridines. Acta Pol Pharm Drug Res 66:147–153Google Scholar
  25. Tafesse L, Sun Q, Schmid L, Valenzano KJ, Rotshteyn Y, Su X, Kyle DJ (2004) Synthesis and evaluation of pyridazinylpiperazines as vanilloid receptor 1 antagonists. Bioorg Med Chem Lett 14(22):5513–5519CrossRefPubMedGoogle Scholar
  26. Tamiz AP, Cai SX, Zhou ZL, Yuen PW, Schelkun RM, Whittemore ER, Weber E, Woodward RM, Keana JF (1999) Structure-activity relationship of N-(phenylalkyl)cinnamides as novel NR2B subtype-selective NMDA receptor antagonists. J Med Chem 42(17):3412–3420CrossRefPubMedGoogle Scholar
  27. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kapple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623CrossRefPubMedGoogle Scholar
  28. Wickenden AD, Roeloffs R, Naughton-Smith G, Mc, Rigdon GC (2004) KCNQ potassium channels: drug targets for the treatment of epilepsy and pain. Expert Opin Ther Pat 14(4):1–13CrossRefGoogle Scholar
  29. Wu B, Zhou L, Cai HH (2008a) Synthesis and neuroprotective properties of novel cinnamide derivatives. Chin Chem Lett 19:1163–1166CrossRefGoogle Scholar
  30. Wu C, Gavva NR, Brennan TJ (2008b) Effect of AMG0347, a transient receptor potential type V1 receptor antagonist, and morphine on pain behaviour after plantar incision. Anesthesiology 108(6):1100–1108CrossRefPubMedGoogle Scholar
  31. Xiao Y, Yang X, Li B, Yuan H, Wan S, Xu Y, Qin Z (2011) Design, synthesis and antifungal/ insecticidal evaluation of novel cinnamide derivatives. Molecules 16:8945–8957CrossRefPubMedGoogle Scholar
  32. Zhao Y, Abraham MH, Lee J, Hersey A, Luscombe NC, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19:1446–1456CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gummalla Prasanthi
    • 1
    • 2
  • Kvsrg Prasad
    • 1
  • Koganti Bharathi
    • 1
  1. 1.Sri Padmavati Mahila Visvavidyalayam (Women’s University)TirupatiIndia
  2. 2.Annamacharya College of PharmacyKadapaIndia

Personalised recommendations