Skip to main content

Advertisement

Log in

Antimalarial activity of phytol derivatives: in vitro and in vivo study

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Severe malaria is one of the leading causes of mortality among children and pregnant woman globally. Resistance development against the frontline antimalarial drugs has created an alarming situation, which requires intensive drug discovery to develop effective, affordable, and accessible antimalarial agents possessing novel modes of action. As a part of our drug discovery program for antimalarial agents from plants, phytol a very commonly occurring diterpene alcohol in the plant was investigated for its antimalarial potential. In vitro antiplasmodial activity against the chloroquine-sensitive Plasmodium falciparum NF54 by measuring the parasite specific lactate dehydrogenase (pfLDH), showed moderate activity (IC50 211.5 ± 0.93 µM). Further, phytol was chemically converted into thirteen derivatives, which were evaluated for their antiplasmodial potential. All the derivatives were moderate active, but among all the derivatives palmitoyl (PhY-3; IC50 12.13 ± 0.31 µM) has found most active without any cytotoxic effect on macrophage cells. PhY-3 was further validated in an in vivo system for its efficacy and safety profile in mice. Oral administration of PhY-3 showed significant reduction of parasitemia and increased mean survival time. It also attributed significant increase in blood glucose and hemoglobin level, when compared with vehicle-treated P. berghei infected mice without any toxic effect on normal mice at a higher dose. These findings confirm suitability of the phytol derivatives as new chemical entities for further investigation towards the management of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar AC, Pereira DB, Amaral NS, De Marco L, Krettli AU (2014) Plasmodium vivax and Plasmodium falciparum ex vivo susceptibility to antimalarials and gene characterization in Rondonia, West Amazon, Brazil. Malar J 13:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C et al. (2014) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55

    Article  PubMed  Google Scholar 

  • Balasubramaniam P, Malathi A (1992) Comparative study of hemoglobin estimated by Drabkin′s and Sahli′s methods. J Postgrad Med 38:8–9

    CAS  PubMed  Google Scholar 

  • Boeuf PS, Loizon S, Awandare GA, Tetteh JK, Addae MM, Adjei GO, Goka B, Kurtzhals JA, Puijalon O, Hviid L, Akanmori BD, Behr C (2012) Insights into deregulated TNF-α and IL-10 production in malaria: implications for understanding severe malarial anaemia. Malar J 11:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler MS, Buss AD (2006) Natural products—the future scaffolds for novel antibiotics? Biochem Pharmacol 71:919–929

    Article  CAS  PubMed  Google Scholar 

  • da Silva TBC, Alves VL, Mendonça LVH, Conserva LM, da Rocha EMM, Andrade EHA, Lemos RPL (2004) Chemical constituents and preliminary antimalarial activity of humiria balsamifera. Pharma Biol 42:94–99

    Article  Google Scholar 

  • Grace MH, Lategan C, Graziose R, Smith PJ, Raskin I, Lila MA (2012) Antiplasmodial activity of the ethnobotanical plant Cassia fistula. Nat Prod Commun 7:1263–1266

    CAS  PubMed  Google Scholar 

  • Kalani K, Agarwal J, Alam S, Khan F, Pal A, Srivastava SK (2013) In silico and in vivo anti-malarial studies of 18β glycyrrhetinic acid from Glycyrrhiza glabra. PLoS One 8:e74761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalani K, Cheema HS, Tripathi H, Khan F, Daroker MP, Srivastava SK (2015) QSAR-guided semi-synthesis and in vitro validation of antiplasmodial activity in ursolic acid derivatives. RSC Adv 5:32133–32143

    Article  CAS  Google Scholar 

  • Knight DJ, Peters W (1980) The antimalarial activity of N-benzyloxydihydrotriazines. The activity of clociguanil (BRL 50216) against rodent malaria, and studies on its mode of action. Ann Trop Med Parasitol 74:393–404

    Article  CAS  PubMed  Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization of Plasmodium falciparum erythrocytic stages in culture. Parasitol Res 65:418–420

    CAS  Google Scholar 

  • Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins B, Hinrichs DJ (1993) Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48:739–741

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Maurya AK, Jyotshna, Saxena A, Shanker K, Pal A, Bawankule DU (2015) Antimalarial and safety evaluation of Pluchea lanceolata (DC.) Oliv. & Hiern: in-vitro and in-vivo study. Curr Pharm Biotechnol 16:544–552

    Article  CAS  PubMed  Google Scholar 

  • Ogetii GN, Akech S, Jemutai J, Boga M, Kivaya E, Fegan G, Maitland K (2010) Hypoglycaemia in severe malaria, clinical associations and relationship to quinine dosage. BMC Infect Dis 10:334

    Article  PubMed  PubMed Central  Google Scholar 

  • Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TC, Krettli AU (2011) Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS One 6:e21237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM (2011) Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 7:1427–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena A, Yadav D, Mohanty S, Cheema HS, Gupta MM, Darokar MP, Bawankule DU (2016) Diarylheptanoids rich fraction of Alnus nepalensis attenuates malaria pathogenesis: in-vitro and in-vivo study. Phytother Res 30:940–948

    Article  CAS  PubMed  Google Scholar 

  • Schantz-Dunn J, Nour NM (2009) Malaria and pregnancy: a global health perspective. Rev Obstet Gynecol 2:186–192

    PubMed  PubMed Central  Google Scholar 

  • Silva JR, Ramos Ade S, Machado M, de Moura DF, Neto Z, Canto-Cavalheiro MM, Figueiredo P, do Rosario VE, Amaral AC, Lopes D (2011) A review of antimalarial plants used in traditional medicine in communities in Portuguese-speaking countries: Brazil, Mozambique, Cape Verde, Guinea-Bissau, Sao Tome and Principe and Angola. Mem Inst Oswaldo Cruz 1:142–158

    Article  Google Scholar 

  • Singhal J, Nagaprashantha L, Vatsyayan R, Awasthi S, Singhal S (2011) RLIP76, a glutathione-conjugate transporter, plays a major role in the pathogenesis of metabolic syndrome. PLoS One 6:e24688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snounou G, Gruner AC, Muller-Graf CD, Mazier D, Renia L (2005) The Plasmodium sporozoite survives RTS, S vaccination. Trends Parasitol 21:456–461

    Article  CAS  PubMed  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay HC, Dwivedi Gaurav R, Roy S, Sharma A, Darokar MP, Srivastava SK (2014) Novel phytol derivatives as drug resistance reversal agents. Chem Med Chem 9:1860–1868

    CAS  PubMed  Google Scholar 

  • WHO (2012) World Malaria Report. Geneva. http://www.who.int/malaria/publications/world_malaria_report_2012/wmr2012_summary_en.pdf?ua=1

Download references

Acknowledgements

We acknowledge the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support through XII FYP networking projects BSC-0203. We are thankful to Director, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India for rendering essential research facilities and support. ICMR-Senior Research Fellowship to Ms. Archana Saxena is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santosh K. Srivastava or Dnyaneshwar U. Bawankule.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Upadhyay, H.C., Cheema, H.S. et al. Antimalarial activity of phytol derivatives: in vitro and in vivo study. Med Chem Res 27, 1345–1354 (2018). https://doi.org/10.1007/s00044-017-2132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2132-2

Keywords

Navigation