Skip to main content

Advertisement

Log in

Synthesis and phospholipidosis effect of a series of cationic amphiphilic compounds: a case study to evaluate in silico and in vitro assays

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In recent years, a large number of in silico and in vitro assays have been developed for safety assessment in early drug discovery. These methods are usually validated using datasets of known drugs with large chemical diversity, while application to homologous series has been rarely explored. Here we report a case study about phospholipidosis (PLD) risk evaluation for a dataset of nine compounds, designed and synthesized to modulate the physico-chemical properties typical of cationic amphiphilic compounds (CADs), representing the main class of PLD inducers. Our aim was to investigate the effect of structure modification on PLD induction according to a number of standard in silico and in vitro methods. As a result, we found that different in silico methods lead to conflicting results when applied to our series of weak PLD inducers, thus the apparently easy-to-use definition of CADs requires special attention. Moreover, when weak inducers are tested in vitro, the revealed PLD effect may vary based on the purity grade of the tested compound and the features of the selected assay. Finally, we have shown that slight modifications on a chemical scaffold can have an impact on the PLD effect. This study also exemplifies that current in silico methods possibly overestimate the PLD induction effect of cationic amphiphilic compounds compared to the in vitro, with the risk of discarding promising compounds based on incorrect safety liabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artese A, Cross S, Costa G, Distinto S, Parrotta L, Alcaro S, Ortuso F, Cruciani G (2013) Molecular interaction fields in drug discovery: recent advances and future perspectives. Wires Comput Mol Sci 3:594–613

    Article  CAS  Google Scholar 

  • Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS (2007) A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and Proteins (FLAP): theory and application. J Chem Inf Model 47:279–294

    Article  CAS  PubMed  Google Scholar 

  • Bhandari N, Figueroa DJ, Lawrence JW, Gerhold DL (2008) Phospholipidosis assay in HepG2 cells and rat or rhesus hepatocytes using phospholipid probe NBD-PE. Assay Drug Dev Technol 6:407–419

    Article  CAS  PubMed  Google Scholar 

  • Blomme EA, Will Y (2016) Toxicology strategies for drug discovery: present and future. Chem Res Toxicol 29:473–504

    Article  CAS  PubMed  Google Scholar 

  • Chapy H, Goracci L, Vayer P, Parmentier Y, Carrupt PA, Decleves X, Scherrmann JM, Cisternino S, Cruciani G (2015) Pharmacophore-based discovery of inhibitors of a novel drug/proton antiporter in human brain endothelial hCMEC/D3 cell line. Br J Pharmacol 172:4888–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatman LA, Morton D, Johnson TO, Anway SD (2009) A strategy for risk management of drug-induced phospholipidosis. Toxicol Pathol 37:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Choi SS, Kim JS, Valerio LG, Sadrieh N (2013) In silico modeling to predict drug-induced phospholipidosis. Toxicol Appl Pharmacol 269:195–204

    Article  CAS  PubMed  Google Scholar 

  • Cross S, Baroni M, Goracci L, Cruciani G (2012a) GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation. J Chem Inf Model 52:2587–2598

    Article  CAS  PubMed  Google Scholar 

  • Cross S, Ortuso F, Baroni M, Costa G, Distinto S, Moraca F, Alcaro S, Cruciani G (2012b) GRID-based three-dimensional pharmacophores II: PharmBench, a benchmark data set for evaluating pharmacophore elucidation methods. J Chem Inf Model 52:2599–2608

    Article  CAS  PubMed  Google Scholar 

  • Cruciani G, Crivori P, Carrupt PA, Testa B (2000) Molecular fields in quantitative structure–permeation relationships: the VolSurf approach. J Mol Struct 503:17–30

    Article  CAS  Google Scholar 

  • Cruciani G, Milletti F, Storchi L, Sforna G, Goracci L (2009) In silico pKa prediction and ADME profiling. Chem Biodivers 6:1812–1821

    Article  CAS  PubMed  Google Scholar 

  • DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000–2009. Clin Pharmacol 87:272–277

    CAS  Google Scholar 

  • Fischer H, Atzpodien EA, Csato M, Doessegger L, Lenz B, Schmitt G, Singer T (2012) In silico assay for assessing phospholipidosis potential of small druglike molecules: training, validation, and refinement using several data sets. J Med Chem 55:126–139

    Article  CAS  PubMed  Google Scholar 

  • Goracci L, Ceccarelli M, Bonelli D, Cruciani (2013) Modeling phospholipidosis induction: reliability and warnings. J Chem Inf Model 53:1436–1446

    Article  CAS  PubMed  Google Scholar 

  • Goracci L, Buratta S, Urbanelli L, Ferrara G, Di Guida R, Emiliani C, Cross S (2015) Evaluating the risk of phospholipidosis using a new multidisciplinary pipeline approach. Eur J Med Chem 92:49–63

    Article  CAS  PubMed  Google Scholar 

  • Halliwell WH (1997) Cationic amphiphilic drug-induced phospholipidosis. Toxicol Pathol 25:53–60

    Article  CAS  PubMed  Google Scholar 

  • Hanumegowda UM, Wenke G, Regueiro-Ren A, Yordanova, Corradi JP, Adams SP (2010) Phospholipidosis as a function of basicity, lipophilicity, and volume of distribution of compounds. Chem Res Toxicol 23:749–755

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Hirayama M, Hirota Y, Asa E, Seki J, Tanaka Y (2008) Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem Biophys Res Commun 377:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ivanciuc O (2008) Weka machine learning for predicting the phospholipidosis inducing potential. Curr Top Med Chem 8:1691–1709

    Article  CAS  PubMed  Google Scholar 

  • Kasahara T, Tomita K, Murano H, Harada, Tsubakimoto K, Ogihara T, Ohnishi S, Kakinuma C (2006) Establishment of an in vitro high-throughput screening assay for detecting phospholipidosis-inducing potential. Toxicol Sci 90:133–141

    Article  CAS  PubMed  Google Scholar 

  • Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, Parkinson A (2013) Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos 41:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodavanti UP, Mehendale HM (1990) Cationic amphiphilic drugs and phospholipid storage disorder. Pharmacol Rev 42:327–354

    CAS  PubMed  Google Scholar 

  • Kruhlak NL, Choi SS, Contrera JF, Weaver JL, Willard JM, Hastings KL, Sancilio LF (2008) Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models. Toxicol Mech Methods 18:217–227

    Article  CAS  PubMed  Google Scholar 

  • Lepri S, Nannetti G, Muratore G, Cruciani G, Ruzziconi R, Mercorelli B, Palu G, Loregian A, Goracci L (2014) Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J Med Chem 57:4337–4350

    Article  CAS  PubMed  Google Scholar 

  • Lowe R, Mussa HY, Nigsch F, Glen RC, Mitchell JB (2012) Predicting the mechanism of phospholipidosis. J Cheminform 4:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lullmann H, Lullmann-Rauch R, Wassermann O (1975) Drug-induced phospholipidoses. II. Tissue distribution of the amphiphilic drug chlorphentermine. Crit Rev Toxicol 4:185–218

    Article  CAS  Google Scholar 

  • Mannhold R, Berellini G, Carosati E, Benedetti P (2006) AOME properties and their prediction major causes for failure in drug development are unsuitable pharmacokinetic properties of drug candidates including absorption, distribution, metabolism, and excretion (ADME), which were traditionally measured at rather late stages of drug development. Nowadays, the testing of ADME properties is done much earlieri. In: Cruciani G (ed) Molecular interaction fields: applications in drug discovery and ADME prediction. Wiley-VCH, New York, 2006, vol. 27 173–196

    Google Scholar 

  • Milletti F, Storchi L, Goracci L, Bendels S, Wagner B, Kansy M, Cruciani G (2010) Extending pKa prediction accuracy: high-throughput pKa measurements to understand pKa modulation of new chemical series. Eur J Med Chem 45:4270–4279

    Article  CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molecular Discovery Ltd. http://www.moldiscovery.com/. Accessed 11 Feb 2016

  • Muehlbacher M, Tripal P, Roas F, Kornhuber J (2012) Identification of drugs inducing phospholipidosis by novel in vitro data. ChemMedChem 7:1925–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munic V, Banjanac M, Kostrun S, Nujic K, Bosnar M, Marjanovic N, Ralic J, Matijasic M, Hlevnjak M, Erakovic Haber V (2011) Intensity of macrolide anti-inflammatory activity in J774A.1 cells positively correlates with cellular accumulation and phospholipidosis. Pharmacol Res 64:298–307

    Article  CAS  PubMed  Google Scholar 

  • Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD, Will Y (2011) A high content screening assay for identifying lysosomotropic compounds. Toxicol In Vitro 25:715–723

    Article  CAS  PubMed  Google Scholar 

  • Nonoyama T, Fukuda R (2008) Drug-induced phospholipidosis: Pathological aspects and its prediction. J Toxicol Pathol 21:9–24

    Article  CAS  Google Scholar 

  • Orogo AM, Choi SS, Minnier BL, Kruhlak NL (2012) Construction and consensus performance of (Q)SAR models for predicting phospholipidosis using a dataset of 743 compounds. Mol Inf 31:725–739

    Article  CAS  Google Scholar 

  • Pelletier DJ, Gehlhaar D, Tilloy-Ellul, Johnson TO, Greene (2007) Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential. J Chem Inf Model 47:1196–1205

    Article  CAS  PubMed  Google Scholar 

  • Ploemen JP, Kelder J, Hafmans T, van de Sandt H, van Burgsteden JA, Salemink PJ, van Esch E (2004) Use of physicochemical calculation of pKa and CLogP to predict phospholipidosis-inducing potential: a case study with structurally related piperazines. Exp Toxicol Pathol 55:347–355

    CAS  PubMed  Google Scholar 

  • Quaglino D, Ha HR, Duner E, Bruttomesso D, Bigler L, Follath F, Realdi G, Pettenazzo A, Baritussio A (2004) Effects of metabolites and analogs of amiodarone on alveolar macrophages: structure-activity relationship. Am J Physiol Lung Cell Mol Physiol 287:L438–L447

    Article  CAS  PubMed  Google Scholar 

  • Reasor MJ, Hastings KL, Ulrich RG (2006) Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 5:567–583

    Article  CAS  PubMed  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Sirci F, Goracci L, Rodriguez D, an Muijlwijk-Koezen J, Gutierrez-de-Teran H, Mannhold R (2012) Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A(1), A (2A), A (2B), and A (3) receptor antagonists. J Comput Aided Mol Des 26:1247–1266

    Article  CAS  PubMed  Google Scholar 

  • Slavov SH, Wilkes JG, Buzatu DA, Kruhlak NL, Willard JM, Hanig JP, Beger RD (2014) Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints. Bioorg Med Chem 22:6706–6714

    Article  CAS  PubMed  Google Scholar 

  • SPECS. http://www.specs.net/. Accessed 18 Dec 2015

  • Sun H, Shahane S, Xia M, Austin CP, Huang R (2012) Structure based model for the prediction of phospholipidosis induction potential of small molecules. J Chem Inf Model 52:1798–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa K, Sugano K, Yamada H, Horii I (2006) Physicochemical and cell-based approach for early screening of phospholipidosis-inducing potential. J Toxicol Sci 31:315–324

    Article  CAS  PubMed  Google Scholar 

  • Tondi D, Cross S, Venturelli A, Costi M, Cruciani G, Spyrakis F (2016) Decoding the structural basis for carbapenem hydrolysis by class A β-lactamases: fishing for a pharmacophore. Curr Drug Targets 17:983–1005

    Article  CAS  PubMed  Google Scholar 

  • van de Water FM, Havinga, Ravesloot WT, Horbach GJ, Schoonen WG (2011) High content screening analysis of phospholipidosis: validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. Toxicol In Vitro 25:1870–1882

    Article  PubMed  Google Scholar 

  • Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14:475–486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Francesco Galli for generously sharing his laboratory facilities for biological analysis, and Dr. Simon Cross for helpful comments and for English revision. Financial support from the Italian MIUR within the “FIRB-Futuro in Ricerca 2010” Program—Project RBFR10×500 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Goracci.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Susan Lepri and Aurora Valeri contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lepri, S., Valeri, A., Buratta, S. et al. Synthesis and phospholipidosis effect of a series of cationic amphiphilic compounds: a case study to evaluate in silico and in vitro assays. Med Chem Res 27, 679–692 (2018). https://doi.org/10.1007/s00044-017-2093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2093-5

Keywords

Navigation