Medicinal Chemistry Research

, Volume 27, Issue 2, pp 531–537 | Cite as

Investigating the role of miRNA-98 and miRNA-214 in chemoresistance of HepG2/Dox cells: studying their effects on predicted ABC transporters targets

  • Ahmed R. Hamed
  • Mohamed Emara
  • Maha M. Soltan
  • Shaymaa M. M. Yahya
  • Heba K. Nabih
  • Ghada H. Elsayed
Original Research


Multidrug resistance (MDR) remains a burden in cancer chemotherapy. Several members of ATP-binding cassette (ABC transporters) are responsible for the efflux of anticancer drugs outside cells decreasing the drug’s effective intracellular concentration. Therefore, extensive efforts have been conducted by researcher to circumvent the activity of these transporters to enhance the success of chemotherapy. In the present study, we questioned the role played by two microRNAs, namely miR-98 and miR-214 in controlling their bioinformatics’ predicted ABC efflux transporter targets ABCC5 and ABCC10, in addition to ABCB1 and ABCC1 in doxorubicin-resistant HCC cells (HepG2/Dox). miRNA mimics and inhibitors transfection were utilized to explore the role of both candidate molecules in MDR in HepG2/Dox cells. QRT-PCR and western blotting were used for quantitative gene and protein analyses. The study revealed that miR-214 mimics significantly upregulated ABCC1 and ABCC5. While, miR-98 and miR-214 inhibitors significantly down regulated ABCC5 and ABCC10, respectively. These results introduced a possible negative role played by both miR-98 and miR-214 on drug sensitization. Moreover, these findings clarified that the predicted targets for miR-98 and miR-214 were not confirmed experimentally.


MDR miR-98 miR-214 ABCC5 ABCC10 



This work was supported by grants from Science and technology development fund (STDF), Egypt, Basic and applied research grant (Project ID: 4361). We thank Salma M. Abdelnasser and Gamal Eldein F. Abd-Ellatef for technical help.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D et al. (2015) Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 15:71CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blower PE, Verducci JS, Lin S, Zhou J, Chung JH, Dai Z et al. (2007) MicroRNA expression profiles for the NCI-60 cancer cell panel. Mol Cancer Ther 6(5):1483–1491CrossRefPubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  4. Cort A, Ozben T (2015) Natural product modulators to overcome multidrug resistance in cancer. Nutr Cancer 67(3):411–423CrossRefPubMedGoogle Scholar
  5. Gong Z, Dong Z, Yang L, Yang J, Li J, Le Y, et al. (2014). The role of MicroRNA in lung cancer drug resistance and targeted therapy. In: Sarkar FH (ed) MicroRNA Targeted Cancer Therapy. Springer, Cham, pp. 51–82.
  6. Huang SD, Yuan Y, Zhuang CW, Li BL, Gong DJ, Wang SG et al. (2012) MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma. Mol Cancer 11:51CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46(2):298–311CrossRefPubMedGoogle Scholar
  8. Kugimiya N, Nishimoto A, Hosoyama T, Ueno K, Enoki T, Li TS et al. (2015) The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J Cell Mol Med 19(7):1569–1581CrossRefPubMedPubMedCentralGoogle Scholar
  9. Liu T, Hou L, Huang Y (2014) EZH2-specific microRNA-98 inhibits human ovarian cancer stem cell proliferation via regulating the pRb-E2F pathway. Tumour Biol. 35(7):7239–7247CrossRefPubMedGoogle Scholar
  10. Llovet JM, Villanueva A, Lachenmayer A, Finn RS (2015) Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 12(7):408–424CrossRefPubMedGoogle Scholar
  11. Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF et al. (2013) MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett 339(1):107–115CrossRefPubMedGoogle Scholar
  12. Phatak P, Byrnes KA, Mansour D, Liu L, Cao S, Li R et al. (2016) Overexpression of miR-214-3p in esophageal squamous cancer cells enhances sensitivity to cisplatin by targeting survivin directly and indirectly through CUG-BP1. Oncogene 35(16):2087–2097CrossRefPubMedGoogle Scholar
  13. Pisco AO, Jackson DA, Huang S (2014) Reduced intracellular drug accumulation in drug-resistant leukemia cells is not only solely due to MDR-mediated efflux but also to decreased uptake. Front Oncol 4:306CrossRefPubMedPubMedCentralGoogle Scholar
  14. Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W,III, Dantzig AH (2005) The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 4(5):855–863CrossRefPubMedGoogle Scholar
  15. Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D’Onorio de Meo P et al. (2012) Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol 56(4):855–861CrossRefPubMedGoogle Scholar
  16. Shen G, Jia H, Tai Q, Li Y, Chen D (2013) miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis 34(1):211–219CrossRefPubMedGoogle Scholar
  17. Siragam V, Rutnam ZJ, Yang W, Fang L, Luo L, Yang X et al. (2012) MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11. Oncotarget 3(11):1370–1385CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sotillo E, Thomas-Tikhonenko A (2011) Shielding the messenger (RNA): microRNA-based anticancer therapies. Pharmacol Ther 131(1):18–32CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ting HJ, Messing J, Yasmin-Karim S, Lee YF (2013) Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 288(1):1–9CrossRefPubMedGoogle Scholar
  20. Tiwari AK, Sodani K, Dai CL, Abuznait AH, Singh S, Sodani ZJ et al. (2013) Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett 328(2):307–317CrossRefPubMedGoogle Scholar
  21. To KK (2013) MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy. J Biomed Sci 20:99CrossRefPubMedPubMedCentralGoogle Scholar
  22. Wang P, Chen S, Fang H, Wu X, Chen D, Peng L et al. (2016) miR-214/199a/199a* cluster levels predict poor survival in hepatocellular carcinoma through interference with cell-cycle regulators. Oncotarget 7(1):929–945PubMedGoogle Scholar
  23. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y et al. (2008) Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 283(19):13205–13215CrossRefPubMedGoogle Scholar
  24. Xiang Q, Tang H, Yu J, Yin J, Yang X, Lei X (2013) MicroRNA-98 sensitizes cisplatin-resistant human lung adenocarcinoma cells by up-regulation of HMGA2. Pharmazie 68(4):274–281PubMedGoogle Scholar
  25. Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z et al. (2011) MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett 310(2):160–169PubMedGoogle Scholar
  26. Yahya SM, Hamed AR, Emara M, Soltan MM, Abd-Ellatef GE, Abdelnasser SM (2016) Differential effects of c-myc and ABCB1 silencing on reversing drug resistance in HepG2/Dox cells. Tumour Biol 37(5):5925–5932. CrossRefPubMedGoogle Scholar
  27. Zhang XL, Shi HJ, Wang JP, Tang HS, Cui SZ (2015) MiR-218 inhibits multidrug resistance (MDR) of gastric cancer cells by targeting Hedgehog/smoothened. Int J Clin Exp Pathol 8(6):6397–6406PubMedPubMedCentralGoogle Scholar
  28. Zhang X, Yashiro M, Qiu H, Nishii T, Matsuzaki T, Hirakawa K (2010) Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res 30(3):915–921PubMedGoogle Scholar
  29. Zhou L, Yang ZX, Song WJ, Li QJ, Yang F, Wang DS et al. (2013) MicroRNA-21 regulates the migration and invasion of a stem-like population in hepatocellular carcinoma. Int J Oncol 43(2):661–669CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ahmed R. Hamed
    • 1
  • Mohamed Emara
    • 2
  • Maha M. Soltan
    • 1
  • Shaymaa M. M. Yahya
    • 3
  • Heba K. Nabih
    • 4
  • Ghada H. Elsayed
    • 3
  1. 1.Pharmaceutical Research GroupCenter of Excellence for Advanced Sciences and Phytochemistry Department National Research CentreGizaEgypt
  2. 2.Department of Microbiology and Immunology, Faculty of PharmacyHelwan UniversityCairoEgypt
  3. 3.Hormones Department, MeicalResearch DivisionNational Research CentreGizaEgypt
  4. 4.Medical Biochemistry Department, Meical ResearchDivisionNational Research CentreGizaEgypt

Personalised recommendations