Advertisement

Medicinal Chemistry Research

, Volume 27, Issue 2, pp 512–519 | Cite as

Synthesis and antiviral study of 4-(7,7-dimethyl-4-(piperazin-1-yl)-5,6,7,8-tetrahydroquinazolin-2-yl) morpholine derivatives

  • Balaraman Selvakumar
  • Naveen Gujjar
  • Madhuri Subbiah
  • Kuppanagounder P. Elango
Original Research
  • 107 Downloads

Abstract

A series of 4-(7,7-dimethyl-4-(piperazin-1-yl)-5,6,7,8-tetrahydroquinazolin-2-yl)morpholine substituted sulfonamide and urea derivatives has been synthesized and characterized using spectral techniques. The antiviral activity of these compounds against an avian paramyxo virus (AMPV-1) was screened using MTT assay and found that one of the sulfonamide derivatives (2d) show three-fold higher antiviral activity than Ribavirin, a commercial antiviral drug substance.

Graphical abstract

Open image in new window

Keywords

Tetrahydroquinazoline Piperazine Morpholine Avian paramyxo virus Antiviral 

Notes

Acknowledgements

We are thankful to the Management, Anthem Biosciences, Bangalore, India, for their invaluable support and allocation of resources for this work. We would like to thank the Analytical Chemistry team of Anthem Biosciences for having carried out all the analytical work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2077_MOESM1_ESM.pdf (975 kb)
Supplementary Information

References

  1. Cano C, Barbeau OR, Bailey C, Cockcroft XL, Curtin NJ, Duggan H, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Knights C, Menear KA, Newell DR, Richardson CJ, Smith GCM, Spittle B, Griffin RJ (2010) DNA-dependent protein kinase (DNA-PK) inhibitors. Synthesis and biological activity of quinolin-4-one and pyridopyrimidin-4-one surrogates for the chromen-4-one chemotype. J Med Chem 53(24):8498–8507CrossRefPubMedGoogle Scholar
  2. Cano C, Saravanan K, Bailey C, Bardos J, Curtin NJ, Frigerio M, Golding BT, Hardcastle IR, Hummersone MG, Menear KA, Newell DR, Richardson CJ, Shea K, Smith GC, Thommes P, Ting A, Griffin RJ (2013) 1-Substituted (dibenzo[b,d]thiophen-4-yl)-2-morpholino-4H-chromen-4-ones endowed with dual DNA-PK/PI3-K inhibitory activity. J Med Chem 56(16):6386–6401Google Scholar
  3. Chou T, Li K, Frankowski KJ, Schoenen FJ, Deshaies RJ (2013) Structure–activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. Chem Med Chem 8(2):297–312CrossRefPubMedPubMedCentralGoogle Scholar
  4. de Boer D, Bosman IJ, Hidvegi E, Manzoni C, Benko AA, dos Reys LJ, Maes RA (2001) Piperazine-like compounds: a new group of designer drugs-of-abuse on the European market. Forensic Sci Int 121(1-2):47–56CrossRefPubMedGoogle Scholar
  5. Dibyendu D, Khanna IK, Pillarisetti S (2010) Novel bicyclic compounds as GATA modulators. WO028174(A1):1–135Google Scholar
  6. Dmitriy Z, Peter P (2012) Oncolytic newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol 7(3):347–367CrossRefGoogle Scholar
  7. Fackler JC, Flannery K, Zipkin M, McIntosh K (1990) Precautions in the use of ribavirin at the children’s hospital. N Engl J Med 322(9):634PubMedGoogle Scholar
  8. Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94(1-2):57–63CrossRefPubMedGoogle Scholar
  9. Gilbert BE, Knight V (1986) Biochemistry and clinical applications of ribavirin. Antimicrob Agents Chemother 30:201–205CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hebert MF, Guglielmo BJ (1990) What is the clinical role of aerosolized ribavirin? Drug Intell Clin Pharm 7-8:735–738Google Scholar
  11. Hepworth JD, Gabbutt CD, Heron BM (Eds.) (1995) Comprehensive heterocyclic chemistry-II. Pergamon Press, Oxford, p 221Google Scholar
  12. Izuru A, Tsuyoshi A, Naoki O, Yukiyo T, Kazuyuki S, Hiroyuki A, Masafumi K, Toru N (2012) Preclinical characterization of JTK-853, a novel nonnucleoside inhibitor of the hepatitis C virus RNA-dependent RNA polymerase. Antimicrob Agents Chemother 56(8):4250–4256CrossRefGoogle Scholar
  13. John RK, Huaqing L, Irene D, David GW, Tracy LC, Arlene MM, Lvan M, Marina IS, Thomas RM, Timothy AE, Jorge DB, Marlon C (2010) Rigidified 2-aminopyrimidines as histamine H4 receptor antagonists: effects of substitution about the rigidifying ring. Biorg Med Chem Lett 20(6):1900–1904CrossRefGoogle Scholar
  14. Joule JA, Mills K (2008) Heterocyclic chemistry. Wiley, New York, NYGoogle Scholar
  15. Katritzky AR, Rees CW, Hepworth JD (Eds.) (1985) Comprehensive heterocyclic chemistry. Pergamon Press, Oxford, p 150Google Scholar
  16. Kengi M, Takashi S, Takao N, Michio I, Neill AG, Jin-Chen Y, Shogi O, Yuji N (2003) Potent and selective inhibitors of platelet-derived growth factor receptor phosphorylation. Part 4: structure–activity relationships for substituents on the quinazoline moiety of 4-[4-(N-substituted(thio)carbamoyl)-1-piperazinyl]-6,7-dimethoxyquinazoline derivatives. Biorg Med Chem Lett 13(18):3001–3004CrossRefGoogle Scholar
  17. Kobayashi J, Kand F, Ishibashi M, Shigemori H (1991) Manzacidins A–C, novel tetrahydropyrimidine alkaloids from the Okinawan marine sponge hymeniacidon sp. J Org Chem 56(14):4574–4576CrossRefGoogle Scholar
  18. Looper RE, Runnegar MTC, Williams RM (2005) Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angew Chem Int Ed 25(44):3879–3881CrossRefGoogle Scholar
  19. Noronha G, Cao J, Gritzen C, Mak C, McPherson A, Pathak VP, Renick J, Soll RM, Zeng B, Dneprovskaia E (2008) 2-amino-5-substituted pyrimidine inhibitors. US Patent 0027070:1–99Google Scholar
  20. Ravindra PV, Ashok KT, Bhaskar S, Chauhan RS (2009) Newcastle disease virus as an oncolytic agent. Indian J Med Res 130:507–513PubMedGoogle Scholar
  21. Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Anticancer and antiviral sulfonamides. Curr Med Chem 10(11):925–953CrossRefPubMedGoogle Scholar
  22. Sekiya T, Hiranuma H, Kanayama T, Hata S (1980) Pyrimidine derivatives I. Synthesis of hypoglycemic 2-piperazino-5,6-polymethylenepyrimidines 5,6-polymethylenepyrimidines. Eur J Med Chem 15(4):317–322Google Scholar
  23. Selvakumar B, Vaidyanathan SP, Madhuri S, Elango KP (2017) Synthesis and antiviral activity of 4-(7,7-dimethyl-4-[4-{N-aroyl/benzyl}1-piperazinyl]-5,6,7,8-tetrahydroquinazolin-2-yl) morpholine derivatives. Arkivoc iv:353–364Google Scholar
  24. Skinner GS, Wunz PR (1951) 2,5,5-Trialkyl-1,4,5,6-tetrahydropyrimidines. J Am Chem Soc 73(8):3814–3815CrossRefGoogle Scholar
  25. Sudhakar Babu K, Ravindranath KL, Latha J, Prabhakar V (2015) Synthesis, characterization and mass analysis of novel tri substituted quinazoline-urea derivatives bearing trans substituted morpholine and azetidinone moieties. Int J Pharm Res Rev 4(1):364–380Google Scholar
  26. Supuran CT, Innocenti A, Mastrolorenzo A, Scozzafava A (2004) Antiviral sulfonamide derivatives. Mini Rev Med Chem 4(2):189–200CrossRefPubMedGoogle Scholar
  27. Suresh Kumar K, Swastika G, Ravichandran V, Vijayapandi P (2014) Synthesis, antiviral and antimicrobial activities of quinazoline urea analogs. Int J Drug Des Discov 4(4):1215–1230Google Scholar
  28. Tetsuo S, Hidetoshi H, Masayuki U, Shunsuke H, Shun-Ichi Y (1981) Pyrimidine deivatives II. New synthesis and reactions of 4-amino-2-methylthiopyrimidine derivatives. Chem Pharm Bull 29(4):948–954CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Balaraman Selvakumar
    • 1
  • Naveen Gujjar
    • 2
  • Madhuri Subbiah
    • 2
  • Kuppanagounder P. Elango
    • 3
  1. 1.Anthem Biosciences Pvt. Ltd.BangaloreIndia
  2. 2.National Institute of Animal BiotechnologyHyderabadIndia
  3. 3.Department of ChemistryGandhigram Rural Institute (Deemed University)GandhigramIndia

Personalised recommendations