Medicinal Chemistry Research

, Volume 27, Issue 2, pp 497–511 | Cite as

Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone–chromone and furanchalcone–imidazole hybrids

  • Elisa García
  • Juan C. Coa
  • Elver Otero
  • Miguel Carda
  • Iván D. Vélez
  • Sara M. Robledo
  • Wilson I. Cardona
Original Research


We report herein the synthesis and biological activities (cytotoxicity, leishmanicidal, and trypanocidal) of several furanchalcone–quinoline, furanchalcone–chromone, and furanchalcone–imidazole hybrids. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia and against Trypanosoma cruzi, which is the major pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Compounds (6e, 8a8f, 11b, and 11c) were active against both L. (V) panamensis and T. cruzi being 8e and 8f the most active compounds with an EC50 of 0.78 and 2.16 µM against L. (V) panamensis, respectively, and 0.66 and 0.72 µM against T. cruzi, respectively. Seven hybrid compounds showed better activity than meglumine antimoniate and the anti-trypanosomal activity of nine compounds were higher than benznidazole. Although these compounds showed toxicity for mammalian U-937 cells, they still have the potential to be considered as candidates for antileishmanial or trypanocydal drug development. There is not a clear relationship between the antiprotozoal activity and the length of the alkyl linker. However, we obtained higher bioactivity when the alkyl linker has nine and twelve carbon atoms. Furanchalcone-imidazole hybrids were the most active of all compounds, showing that the imidazole salt moiety is important for their biological actions.


Leishmaniasis Chagas disease Antiprotozoal activity Furanchalcone Hybrids Quinoline 



The authors thank Universidad de Antioquia (grant CODI 6203 and CIDEPRO) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2076_MOESM1_ESM.doc (2.4 mb)
Supporting Information


  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, The WHO Leishmaniasis Control Team (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aponte JC, Verastegui M, Malaga E, Zimic M, Quiliano M, Vaisberg AJ, Gilman RH, Hammond GB (2008) Synthesis, cytotoxicity, and anti-trypanosoma cruzi activity of new chalcones. J Med Chem 51:6230–6234CrossRefPubMedGoogle Scholar
  3. Bhutta ZA, Sommerfeld J, Lassi ZS, Salam RA, Das JK (2014) Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty 3:1–7CrossRefGoogle Scholar
  4. Boumann HA, Damen MJA, Versluis C, Heck AJR, de Kruijff B, de Kroon AI (2003) The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling. Biochemistry 42:3054–3059CrossRefPubMedGoogle Scholar
  5. Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC (1996) Efficient technique for screening drugs for activity against trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40:2592–2597PubMedPubMedCentralGoogle Scholar
  6. Cardona W, Guerra D, Restrepo A (2014) Reactivity of δ-substituted α,β-unsaturated cyclic lactones with antileishmanial activity. Mol Simul 40:477–484CrossRefGoogle Scholar
  7. Chatelain E, Ioset JR (2011) Drug discovery and development for neglected diseases: the DNDi model. Drug Des Dev Ther 5:175–181Google Scholar
  8. Chen M, Zhai L, Christensen SB, Theander TG, Kharazmi A (2001) Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrob Agents Chemother 45:2023–2029CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coa JC, Castrillón W, Cardona W, Carda M, Ospina V, Muñoz JA, Vélez ID, Robledo SM (2015) Synthesis, leishmanicidal, trypanocidal and cytotoxic activity of quinoline-hydrazone hybrids. Eur J Med Chem 101:746–753CrossRefPubMedGoogle Scholar
  10. Coa JC, García E, Carda M, Agut R, Vélez ID, Muñoz JA, Yepes LM, Robledo SM, Cardona WI (2017) Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med Chem Res 26:1405–1414CrossRefGoogle Scholar
  11. Coimbra ES, Antinarelli LM, Silva NP, Souza IO, Meinel RS, Rocha MN, Soares RP, da Silva AD (2016) Quinoline derivatives: synthesis, leishmanicidal activity and involvement of Mitochondrial oxidative stress as mechanism of action. Chem Biol Interact 260: 50–57Google Scholar
  12. Croft SL, Coombs GH (2003) Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508CrossRefPubMedGoogle Scholar
  13. Croft SL, Yardley V (2002) Chemotherapy of Leishmaniasis. Curr Pharm Des 8:319–342CrossRefPubMedGoogle Scholar
  14. Den Boer M, Argaw D, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471–1477CrossRefGoogle Scholar
  15. Dos Santos WA, da Paz M, Ferreira AG, Piloto IC, Nakamura CV (2009) Chemical constituents from the roots of Spathelia excelsa and their antiprotozoal activity. J Braz Chem Soc 20:1089–1094Google Scholar
  16. Duque-Benítez SM, Ríos-Vásquez LA, Ocampo-Cardona R, Cedeño DL, Jones MA, Vélez ID, Robledo SM (2016) Synthesis of novel quaternary ammonium salts and their in vitro antileishmanial activity and U-937 cell cytotoxicity. Molecules 21:381CrossRefPubMedGoogle Scholar
  17. Finney JD (1978) Probit analysis: statistical treatment of the sigmoid response curve, 3rd edn. Cambridge University Press, Cambridge, p 550Google Scholar
  18. Havrylyuk D, Zimenkovsky B, Karpenko O, Grellier P, Lesyk R (2014) Synthesis of pyrazoline–thiazolidinone hybrids with trypanocidal activity. Eur J Med Chem 85:245–254CrossRefPubMedGoogle Scholar
  19. Insuasty B, Ramirez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Velez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J (2015) An efficient synthesis of a new caffeine-based chalcones, pyrazolines and pyrazolo[3-4-b][1-4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Chem Med 93:401–413CrossRefGoogle Scholar
  20. Keenan M, Chaplin JH (2015) A new era for chagas disease drug discovery? Prog Med Chem 54:185–230CrossRefPubMedGoogle Scholar
  21. Keith CT, Borisy A, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78CrossRefPubMedGoogle Scholar
  22. Li J-T, Yang W-Z, Wang S-X, Li S-H, Li T-S (2002) Improved synthesis of chalcones under ultrasound irradiation. Ultrason Sonochem 9:237–239CrossRefPubMedGoogle Scholar
  23. Lodish WH, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2016) Molecular cell biology, 8th edn. W. H. Freeman, New York, NY, p 273Google Scholar
  24. Meunier B (2008) Hybrid molecules with a dual mode of action. Dream or reality? Acc Chem Res 41:69–77CrossRefPubMedGoogle Scholar
  25. Mottram JC, Coombs GH, Alexander J (2004) Cysteine peptidases as virulence factors of Leishmania. Curr Opin Microbiol 7:375–381CrossRefPubMedGoogle Scholar
  26. Nakayama H, Loiseau PM, Bories C, Torres de Ortiz S, Schinini A, Serna E, Rojas de Arias A, Fakhfakh MA, Franck X, Figasere B, Hocquemiller R, Fourner A (2005) Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 49: 4950–4956Google Scholar
  27. Nouvellet P, Cucunubá ZM, Gourbière S (2015) Ecology, evolution and control of Chagas disease: a century of neglected modeling and promising future. Adv Parasitol 87:135–191CrossRefPubMedGoogle Scholar
  28. Olmo F, Gómez-Contreras F, Navarro P, Marín C, Yunta MJR, Cano C, Campayo L, Martín-Oliva D, Rosales MJ, Sanchez-Moreno M (2015) Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 106: 106–119Google Scholar
  29. Otero E, Vergara S, Robledo SM, Cardona W, Carda M, Vélez ID, Rojas C, Otálvaro F (2014) Synthesis, leishmanicidal and cytotoxic activity of triclosan–chalcone, triclosan–chromone and triclosan–coumarin hybrids. Molecules 19:13251–13266CrossRefPubMedGoogle Scholar
  30. Papadopoulou MV, Bloomer WD, Rosenzweig HS, Wilkinson SR, Kaiser M (2014) Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents. Eur J Med Chem 87:79–88CrossRefPubMedGoogle Scholar
  31. Peng Y, Song G (2002) Combined microwave and ultrasound assisted Williamson ether synthesis in the absence of phase-transfer catalysts. Green Chem 4:349–351CrossRefGoogle Scholar
  32. Porwal S, Chauhan SS, Chauhan PMS, Shakya N, Verma A, Gupta S (2009) Discovery of novel antileishmanial agents in an attempt to synthesize pentamidine–aplysinopsin hybrid molecule. J Med Chem 52:5793–5802CrossRefPubMedGoogle Scholar
  33. Pulido SA, Muñoz DL, Restrepo AM, Mesa CV, Alzate JF, Vélez ID, Robledo SM (2012) Improvement of the green fluorescent protein reporter system in Leishmania spp. for the in vitro and in vivo screening of antileishmanial drugs. Acta Trop 122:36–45CrossRefPubMedGoogle Scholar
  34. Qiao Z, Wang Q, Zhang F, Wang Z, Bowling T, Nare B, Jacobs RT, Zhang J, Ding D, Liu Y, Zhou (2012) Chalcone–benzoxaborole hybrid molecules as potent antitrypanosomal agents. J Med Chem 55:3553–3557CrossRefPubMedGoogle Scholar
  35. Rosenthal PJ (2003) Antimalarial drug discovery: old and new approaches. J Exp Biol 206:3735–3744CrossRefPubMedGoogle Scholar
  36. Sánchez-Moreno M, Gómez-Contreras F, Navarro P, Marín C, Ramírez-Macías I, Olmo F, Sanz AM, Campayo L, Cano C, Yunta MJ (2012) In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. J Antimicrob Chemother 67:387–397CrossRefPubMedGoogle Scholar
  37. Srinivas N, Palne S, Gupta S, Bhandari K (2009) Aryloxy cyclohexyl imidazoles: a novel class of antileishmanial agents. Bioorg Med Chem Lett 19:324–327CrossRefPubMedGoogle Scholar
  38. Taylor VM, Cedeño DL, Muñoz DL, Jones MA, Lash TD, Young AM, Constantino MH, Esposito N, Vélez ID, Robledo SM (2011) In vitro and in vivo studies of the utility of dimethyl and diethyl carbaporphyrin ketals in treatment of cutaneous leishmaniasis. Antimicrob Agents Chemother 55:4755–4764CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tempone AG, da Silva AC, Brandt CA, Martínez FS, Borborema SE, da Silveira MA, de Andrade HFJr (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolines. J Antimicrob Chemother 49:1076–1080CrossRefGoogle Scholar
  40. World Health Organization (2013) Accessed 12 Dec 2013

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Elisa García
    • 1
  • Juan C. Coa
    • 1
  • Elver Otero
    • 1
  • Miguel Carda
    • 2
  • Iván D. Vélez
    • 3
  • Sara M. Robledo
    • 3
  • Wilson I. Cardona
    • 1
  1. 1.Chemistry of Colombian Plants, Institute of Chemistry, School of Exact and Natural SciencesUniversity of Antioquia-UdeAMedellínColombia
  2. 2.Department of Inorganic and Organic ChemistryJaume I UniversityCastellónSpain
  3. 3.PECET-Medical Research Institute, School of MedicineUniversity of Antioquia-UdeAMedellínColombia

Personalised recommendations