Medicinal Chemistry Research

, Volume 27, Issue 2, pp 420–428 | Cite as

QSAR studies of indoyl aryl sulfides and sulfones as reverse transcriptase inhibitors

  • Pablo R. Duchowicz
  • Daniel E. Bacelo
  • Silvina E. Fioressi
  • Valeria Palermo
  • Nnenna E. Ibezim
  • Gustavo P. Romanelli
Original Research
  • 83 Downloads

Abstract

The inhibitory HIV reverse transcriptase activity of 172 non-nucleoside indoyl aryl sulfones and sulfides is studied with a QSAR analysis, in order to identify the molecular characteristics influencing the interaction with the reverse transcriptase enzyme. This work increases the available QSAR studies of indoyl aryl sulfones and sulfides using the reported experimental EC50 values against HIV-1 wild type (IIIB) in human T-lymphocyte (CEM) cells. Different approaches are proposed, involving 0D, 1D and 2D molecular descriptors from PaDEL freeware, and also based on flexible descriptors from CORAL freeware. Three models are finally presented, which correlate the inhibitory HIV reverse transcriptase activity with good accuracy. It is demonstrated that the established models are predictive in the validation process. The novelty of the present work relies on the development of structure-inhibitory HIV activity relationships, through a computational technique that does not require the knowledge of the molecular conformation during the structural representation. The obtained results would contribute to guide the design of more effective compounds for HIV treatment.

Keywords

Indoyl aryl sulfides and sulfones HIV reverse transcriptase inhibitors QSAR PaDEL CORAL 

Notes

Acknowledgements

PRD acknowledges the financial support from the National Research Council of Argentina (CONICET) PIP11220130100311 project and to Ministerio de Ciencia, Tecnología e Innovación Productiva for the electronic library facilities. The authors are members of the scientific researcher career of the National Research Council of Argentina (CONICET).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

44_2017_2069_MOESM1_ESM.docx (577 kb)
Supplementary Materials

References

  1. Aranda JF, Garro Martinez JC, Castro EA, Duchowicz PR (2016) Conformation-independent QSPR approach for the soil sorption coefficient of heterogeneous compounds. Int J Mol Sci 17:1247–1255CrossRefPubMedCentralGoogle Scholar
  2. Artico M, Silvestri R, Stefancich G, Massa S, Pagnozzi E, Musu D, Scintu F, Pinna E, Tinti E, La Colla P (1995) Synthesis of pyrryl aryl sulfones targeted at the HIV‐1 reverse transcriptase. Arch Pharm 328:223–229CrossRefGoogle Scholar
  3. Artico M, Silvestri R, Pagnozzi E, Bruno B, Novellino B, Greco G, Masaa S, Ettorre A, Loi AG, Scintu F, La Colla P (2000) Structure-based design, synthesis, and biological evaluation of novel pyrrolyl aryl sulfones: HIV-1 non-nucleoside reverse transcriptase inhibitors active at nanomolar concentrations. J Med Chem 43:1886–1891CrossRefPubMedGoogle Scholar
  4. Ashok P, Chander S, Balzarini J, Pannecouque C, Murugesan S (2015a) Design, synthesis of new β-carboline derivatives and their selective anti-HIV-2 activity. Bioorg Med Chem Lett 25:1232–1235CrossRefPubMedGoogle Scholar
  5. Ashok P, Sharma H, Lathiya H, Chander S, Murugesan S (2015b) In-silico design and study of novel piperazinyl β-carbolines as inhibitor of HIV-1 reverse transcriptase. Med Chem Res 24:513–522CrossRefGoogle Scholar
  6. Bonini C, Chiummiento L, Di Blasio N, Funicello M, Lupattelli P, Tramutola F, Berti F, Ostric A, Miertus S, Frecer V, Kong DX (2014) Synthesis and biological evaluation of new simple indolic non peptidic HIV Protease inhibitors: the effect of different substitution patterns. Bioorg Med Chem 22:4792–4802CrossRefPubMedGoogle Scholar
  7. Broder SA, Fauci AS (1988) Progress in drug therapies for HIV infection. Public Health Rep 103:224PubMedPubMedCentralGoogle Scholar
  8. Cancio R, Silvestri R, Ragno R, Artico M, De Martino G, La Regina G, Crespan E, Zanoli S, Hübscher U, Spadari S, Maga G (2005) High potency of indolyl aryl sulfone nonnucleoside inhibitors towards drug-resistant human immunodeficiency virus type 1 reverse transcriptase mutants is due to selective targeting of different mechanistic forms of the enzyme. Antimicrob Agents Chemother 49:4546–4554CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cesarini S, Spallarossa A, Ranise A, Schenone S, La Colla P, Collu G, Sanna G, Loddo R (2010) (Hetero) aroyl esters of 2-(N-phthalimido) ethanol and analogues: parallel synthesis, anti-HIV-1 activity and cytotoxicity. Med Chem Res 19:311–336CrossRefGoogle Scholar
  10. ChemSketch. http://www.acdlabs.com. Accessed 1 Sep 2015
  11. Consonni V, Ballabio D, Todeschini R (2009) Comments on the definition of the Q 2 parameter for QSAR validation. J Chem Inf Model 49:1669–1678CrossRefPubMedGoogle Scholar
  12. CORALSEA. http://www.insilico.eu/coral. Accessed 2 May 2016
  13. De Clercq E (2009) Highlights in the discovery of antiviral drugs: a personal retrospective. J Med Chem 53:1438–1450CrossRefGoogle Scholar
  14. Defant A, Mancini I, Tomazzolli R, Balzarini J (2015) Design, synthesis, and biological evaluation of novel 2H‐pyran‐2‐one derivatives as potential HIV‐1 reverse transcriptase inhibitors. Arch Pharm 348:23–33CrossRefGoogle Scholar
  15. De Martino G, La Regina G, Ragno R, Coluccia A, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico M, Silvestri R (2006) Indolyl aryl sulphones as HIV-1 non-nucleoside reverse transcriptase inhibitors: synthesis, biological evaluation and binding mode studies of new derivatives at indole-2-carboxamide. Antivir Chem Chemother 17:59–77CrossRefPubMedGoogle Scholar
  16. Di Santo R, Costi R (2005) 2H-pyrrolo [3, 4-b][1, 5] benzothiazepine derivatives as potential inhibitors of HIV-1 reverse transcriptase. Il Farmaco 60:385–392CrossRefPubMedGoogle Scholar
  17. Duchowicz PR, Castro EA, Fernández FM (2006) Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies. MATCH Commun Math Comput Chem 55:179–192Google Scholar
  18. Duchowicz PR, Goodarzi M, Ocsachoque MA, Romanelli GP, Ortiz ED, Autino JC, Bennardi DO, Ruiz DM, Castro EA (2009) QSAR analysis on Spodoptera litura antifeedant activities for flavone derivatives. Sci Total Environ 408:277–285CrossRefPubMedGoogle Scholar
  19. Golbraikh A, Tropsha A (2002) A beware of q2! J Mol Graph Model 20:269–276CrossRefPubMedGoogle Scholar
  20. Guendel I, Iordanskiy S, Van Duyne R, Kehn-Hall K, Saifuddin M, Das R, Jaworski E, Sampey GC, Senina S, Shultz L, Narayanan A (2014) Novel neuroprotective GSK-3β inhibitor restricts Tat-mediated HIV-1 replication. J Virol 88:1189–1208CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hunter R, Younis Y, Muhanji CI, Curtin TL, Naidoo KJ, Petersen M, Bailey CM, Basavapathruni A, Anderson KS (2008) C-2-Aryl O-substituted HI-236 derivatives as non-nucleoside HIV-1 reverse-transcriptase inhibitors. Bioorg Med Chem 16:10270–10280CrossRefPubMedPubMedCentralGoogle Scholar
  22. La Regina G, Coluccia A, Piscitelli F, Bergamini A, Sinistro A, Cavazza A, Maga G, Samuele A, Zanoli S, Novellino E, Artico MG, Silvestri R (2007) Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity. J Med Chem 50:5034–5038CrossRefPubMedGoogle Scholar
  23. La Regina G, Coluccia A, Brancale A, Piscitelli F, Gatti V, Maga G, Samuele A, Pannecouque C, Schols D, Balzarini J, Novellino E, Silvestri R (2011) Indolylarylsulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: new cyclic substituents at indole-2-carboxamide. J Med Chem 54:1587–1598CrossRefPubMedGoogle Scholar
  24. Matlab 7.0. http://www.mathworks.com. Accessed 29 July 2016
  25. McMahon JB, Gulakowski RJ, Weialow OS, Shultz RJ, Narayanan VL, Clanton DJ, Pedemonte R, Wassmundt FW, Buckheit Jr RW, Decker WD, White EL, Bader JP, Boyd MR (1993) Diarylsulphones, a new chemical class of nonnucleoside antiviral inhibitors of immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 37:754–760CrossRefPubMedPubMedCentralGoogle Scholar
  26. Musah RA (2004) The HIV-1 nucleocapsid zinc finger protein as a target of antireviral therapy. Curr Top Med Chem 4:1605–1622CrossRefPubMedGoogle Scholar
  27. Nguyen Van Nhien A, Tomassi C, Len C, Marco-Contelles JL, Balzarini J, Pannecouque C, De Clercq E, Postel DA (2005) First synthesis and evaluation of the inhibitory effects of aza analogues of TSAO on HIV-1 replication. J Med Chem 48:4276–4284CrossRefPubMedGoogle Scholar
  28. Oversteegen L, Shah M, Rovini H (2007) HIV combination products. Nat Rev Drug Discov 6:951–952CrossRefGoogle Scholar
  29. PaDEL. http://www.yapcwsoft.com. Accessed 2 May 2016
  30. Pan T, He X, Chen B, Chen H, Geng G, Luo H, Zhang H, Bai C (2015) Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein. Eur J Med Chem 95:500–513CrossRefPubMedGoogle Scholar
  31. Pannecouque C, Szafarowicz B, Volkova N, Bakulev V, Dehaen W, Mély Y, Daelemans D (2010) Inhibition of HIV-1 replication by a bis-thiadiazolbenzene-1, 2-diamine that chelates zinc ions from retroviral nucleocapsid zinc fingers. Antimicrob Agents Chemother 54:1461–1468CrossRefPubMedPubMedCentralGoogle Scholar
  32. Piscitelli F, Coluccia A, Brancale A, La Regina G, Sansone A, Giordano C, Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, La Torre F, Lavecchia A, Novellino E, Silvestri R (2009) Indolylarylsulfones bearing natural and unnatural amino acids discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J Med Chem 52:1922–1934CrossRefPubMedGoogle Scholar
  33. Prajapati HR, Doshi AV (2011) Mixed mesomorphism-I: determination of Latent Transition Temperatures (LTTs). Der Pharma Chem 3:123–133Google Scholar
  34. Ragno R, Artico R, De Martino G, La Regina G, Coluccia A, Di Pasquali A, Silvestri R (2005) Docking and 3-D QSAR studies on indolyl aryl sulfones Binding mode exploration at the HIV-1 reverse transcriptase non-nucleoside binding site and design of highly active N-(2-hydroxyethyl) carboxamide and N-(2-hydroxyethyl) carbohydrazide derivatives. J Med Chem 48:213–223CrossRefPubMedGoogle Scholar
  35. Ragno R, Coluccia A, La Regina G, De Martino G, Piscitelli F, Lavecchia A, Novellino E, Bergamini A, Ciaprini C, Sinistro A, Maga G, Crespan E, Artico MG, Silvestri R (2006) Design, molecular modeling, synthesis and anti-HIV-1 activity of new indolyl aryl sulfones Novel derivatives of the indole-2-carboxamide. J Med Chem 49:3172–3184CrossRefPubMedGoogle Scholar
  36. Ribone SR, Leen V, Madrid M, Dehaen W, Daelemans D, Pannecouque C, Briñón MC (2012) Synthesis, biological evaluation and molecular modeling of 4, 6-diarylpyrimidines and diarylbenzenes as novel non-nucleosides HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 58:485–492CrossRefPubMedGoogle Scholar
  37. Rojas C, Duchowicz PR, Tripaldi P, Pis Diez R (2015a) QSPR analysis for the retention index of flavors and fragrances on a OV-101 column. Chemom Intel Lab Syst 140:126–132CrossRefGoogle Scholar
  38. Rojas C, Duchowicz PR, Tripaldi P, Pis Diez R (2015b) Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase. J Chromatogr A 1422:277–288CrossRefPubMedGoogle Scholar
  39. Roy K, Leonard JT (2004) QSAR modeling of HIV-1 reverse transcriptase inhibitor 2-amino-6-arylsulfonylbenzonitriles and congeners using molecular connectivity and E-state parameters. Bioorg Med Chem 12:745–754CrossRefPubMedGoogle Scholar
  40. Samuele A, Bisi S, Kataropoulou A, La Regina G, Piscitelli F, Gatti V, Silvestri R, Maga G (2011) Mechanism of interaction of novel indolylarylsulfone derivatives with K103N and Y181I mutant HIV-1 reverse transcriptase in complex with its substrates. Antivir Chem Chemother 22:107–118CrossRefPubMedGoogle Scholar
  41. Samuele A, Kataropoulou A, Viola M, Zanoli S, La Regina G, Piscitelli F, Silvestri R, Maga G (2009) Non-nucleoside HIV-1 reverse transcriptase inhibitors di-halo-indolyl aryl sulfones achieve tight binding to drug-resistant mutants by targeting the enzyme–substrate complex. Antivir Res 81:47–55CrossRefPubMedGoogle Scholar
  42. Silvestri R, De Martino G, La Regina G, Artico M, Massa S, Vargiu L, Mura M, Loi AG, Marceddu T, La Colla P (2003) Novel indolyl aryl sulfones active against HIV-1 carrying NNRTI resistance mutations: synthesis and SAR studies. J Med Chem 46:2482–2493CrossRefPubMedGoogle Scholar
  43. Silvestri R, Artico M, De Martino G, La Regina G, Loddo R, La Colla M, La Colla P (2004) Simple, short peptide derivatives of a sulfonylindolecarboxamide (L-737,126) active in vitro against HIV-1 wild type and variants carrying non-nucleoside reverse transcriptase inhibitor resistance mutations. J Med Chem 47:3892–3896CrossRefPubMedGoogle Scholar
  44. Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR (2012) Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 287:38110–38123CrossRefPubMedPubMedCentralGoogle Scholar
  45. Tantillo C, Ding J, Jacobo-Molina A, Nanni RG, Boyer PL, Hughes SH, Pauwels R, Andries K, Janssen PA, Arnold EC (1994) Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase Implications for mechanisms of drug inhibition and resistance. J Mol Biol 243:369–387CrossRefPubMedGoogle Scholar
  46. The Open Babel package, version 231. http://openbabel.org. Accessed 1 Sep 2015
  47. Toropov AA, Toropova AP, Benfenati E, Nicolotti O, Carotti A, Nesmerak K, Veselinović AM, Veselinović JB, Duchowicz PR, Bacelo DE, Castro EA, Rasulev BF, Leszczynska D, Leszczynski J (2015) Quantitative structure-activity relationships in drug design, predictive toxicology, and risk assessment. In: Roy K (ed) QSPR/QSAR analyses by means of the CORAL software: results, challenges, perspectives. IGI Global, Hershey, pp 560–585Google Scholar
  48. UNAIDS gap report (2015) United Nations Programme on HIV/AIDS (UNAIDS). The GAP report 2014, UNAIDS, GenevaGoogle Scholar
  49. Weaver S, Gleeson MP (2008) The importance of the domain of applicability in QSAR modeling. J Mol Graph Model 26:1315–1326CrossRefPubMedGoogle Scholar
  50. WHO (9789240692671_eng) (2014) World Health Organization world health statistics. http://appswhoint/iris/bitstream/10665/112738/1/9789240692671_engpdf?ua=1. Accessed 15 Sept 2015Google Scholar
  51. Williams TM, Ciccarone TM, Saari WS, Wai JS, Greenlee WJ, Balani SK, Goldman ME, Hoffman JM Jr, Lumma Jr WC, Huff J, Rooney C, Sanderson PE, Theoharides AD (1994) Indole derivatives as inhibitors of HIV reverse transcriptase. Patent PCT Int Appl WO 9419321, USAGoogle Scholar
  52. Williams IG (2003) Enfuvirtide (Fuzeon): the first fusion inhibitor. Int J Clin Pract 57:890–897PubMedGoogle Scholar
  53. Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PS (1993) 5-Chloro-3-(phenylsulfonyl) indole-2-carboxamide: a novel, non-nucleoside inhibitor of HIV-1 reverse transcriptase. J Med Chem 36:1291–1294CrossRefPubMedGoogle Scholar
  54. Witvrouw M, Fikkert V, Pluymers W, Matthews B, Mardel K, Schols D, Raff J, Debyser Z, De Clercq E, Holan G, Pannecouque C (2000) Polyanionic (ie polysulfonate) dendrimers can inhibit the replication of human immunodeficiency virus by interfering with both virus adsorption and later steps (reverse transcriptase/integrase) in the virus replicative cycle. Mol Pharmacol 58:1100–1108CrossRefPubMedGoogle Scholar
  55. Yap CW (2011) PaDEL-Descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474CrossRefPubMedGoogle Scholar
  56. Young SD, Amblard MC, Britcher SF, Grey VE, Tran LO, Lumma WC, Huff JR, Schleif WA, Emini EE, O’Brien JA, Pettibone DJ (1995) 2-Heterocyclic indole-3-sulfones as inhibitors of HIV-1 reverse transcriptase. Bioorg Med Chem Lett 5:491–496CrossRefGoogle Scholar
  57. Zhan P, Chen X, Li D, Fang Z, Clercq E, Liu X (2013) HIV‐1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Med Res Rev 33:E1–E72CrossRefPubMedGoogle Scholar
  58. Zhao Z, Wolkenberg SE, Lu M, Munshi V, Moyer G, Feng M, Carella AV, Ecto LT, Gabryelski LJ, Lai MT, Prasad SG (2008) Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). Bioorg Med Chem Lett 18:554–559CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Pablo R. Duchowicz
    • 1
  • Daniel E. Bacelo
    • 2
  • Silvina E. Fioressi
    • 2
  • Valeria Palermo
    • 3
  • Nnenna E. Ibezim
    • 4
  • Gustavo P. Romanelli
    • 3
    • 5
  1. 1.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)CONICET, UNLPLa PlataArgentina
  2. 2.Departamento de Química, Facultad de Ciencias Exactas y NaturalesUniversidad de BelgranoBuenos AiresArgentina
  3. 3.Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias ExactasCONICET, UNLPLa PlataArgentina
  4. 4.Department of Computer EducationUniversity of NigeriaNsukkaNigeria
  5. 5.Cátedra de Química Orgánica, Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y ForestalesUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations