Divergence in Bergmann’s clines: elevational variation and heritability of body size in a leaf-cutting ant

Abstract

The variation in size along elevations has been investigated in various insect species, with contradictory results regarding Bergmann’s or James’ rules. Positive, negative, or hump-shaped patterns have been commonly found, but the sources of variation are generally unknown, because the contribution of genetic and environmental factors is not usually estimated. Social insects offer the opportunity to study the intraspecific variation and heritability of morphological traits due to the ease of finding family groups in the wild. Thus, we aimed to assess the variation in morphological characters of Atta cephalotes and to estimate their heritability as an attempt to understand the sources of variation. We sampled 30 soldiers from five nests at six different elevations in Colombia; soldiers were dissected, and ten morphometric characters were measured. Variation was analysed through nested MANOVA and REML analyses, and heritabilities and co-heritabilities were estimated using a full-sib model. We found significant differences between elevations and nests, with larger soldiers occurring at localities in intermediate elevations. Heritabilities varied when they were estimated with all data together or separated by locality, showing low-to-intermediate values, while co-heritabilities were intermediate to high. The nonlinear cline found in this study could be a result of the interactions among the factors generating Bergmann’s patterns, such as temperature, the ecology of leaf-cutting ants (management of temperature inside nests) and resource availability. The heritability results imply a genotype-environment interaction, with an overall greater effect of the environment on body size variation in A. cephalotes soldiers.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability statement

The raw data can be accessed through Dryad (Sandoval-Arango 2020).

References

  1. Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    CAS  PubMed  Google Scholar 

  2. Arnett AE, Gotelli NJ (1999) Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evolution 53:1180–1188

    PubMed  Google Scholar 

  3. Bargum K, Boomsma JJ, Sundström L (2004) A genetic component to size in queens of the ant, Formica truncorum. Behav Ecol Sociobiol 57:9–16

    Google Scholar 

  4. Beldade P, Mateus AR, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363

    PubMed  Google Scholar 

  5. Bergmann K (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3:595–708

    Google Scholar 

  6. Bernadou A, Römermann C, Gratiashvili N et al (2016) Body size but not colony size increases with altitude in the holartic ant, Leptothorax acervorum. Ecol Entomol 41:733–736

    Google Scholar 

  7. Bitner-Mathé BC, Klaczko LB (1999) Size and shape heritability in natural populations of Drosophila mediopunctata: temporal and microgeographical variation. Genetica 105:35–42

    PubMed  Google Scholar 

  8. Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Google Scholar 

  9. Blackburn TM, Ruggiero A (2001) Latitude, elevation and body mass variation in andean passerine birds. Glob Ecol Biogeogr 10:245–259

    Google Scholar 

  10. Bockoven AA, Wilder SM, Eubanks MD (2015) Intraspecific variation among social insect colonies: persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 10:e0133868

    PubMed  PubMed Central  Google Scholar 

  11. Brascamp EW, Willam A, Boigenzahn C et al (2016) Heritabilities and genetic correlations for honey yield, gentleness, calmness and swarming behaviour in Austrian honey bees. Apidologie 47:739–748

    Google Scholar 

  12. Brehm G, Fiedler K (2004) Bergmann’s rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Glob Ecol Biogeogr 13:7–14

    Google Scholar 

  13. Charmantier A, Garant D (2005) Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B Biol Sci 272:1415–1425

    Google Scholar 

  14. Chen I-C, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chown SL, Gaston KJ (1999) Exploring links between physiology and ecology at macro-scales: the role of respiratory metabolism in insects. Biol Rev 74:87–120

    Google Scholar 

  16. Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective. Biol Rev 85:139–169

    PubMed  Google Scholar 

  17. Chown SL, Jumbam KR, Sorensen JG et al (2009) Phenotypic variance, plasticity and heritability estimates of critical thermal limitis depend on methodological context. Funct Ecol 23:133–140

    Google Scholar 

  18. Crozier RH, Bruckner D (1981) Sperm clumpling and the population genetics of Hymenoptera. Am Nat 117:561–563

    Google Scholar 

  19. Cruz CD (2013) GENES—Software para análise de dados em estatística experimental e em genética quantitativa. Acta Sci Agron 35:271–276

    Google Scholar 

  20. Cushman JS, Lawton JH, Manly BFJ (1993) Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95:30–37

    PubMed  Google Scholar 

  21. Della Lucia TM, Gandra LC, Guedes RN (2014) Managing leaf-cutting ants: Peculiarities, trends and challenges. Pest Manag Sci 70:14–23

    CAS  PubMed  Google Scholar 

  22. Dillon ME, Frazier MR, Dudley R (2006) Into thin air: physiology and evolution of alpine insects. Integr Comp Biol 46:49–61

    PubMed  Google Scholar 

  23. Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264

    CAS  PubMed  Google Scholar 

  24. Diamond SE, Chick L, Perez A et al (2017) Rapid evolution of ant thermal tolerance across and urban-rural temperature cline. Biol J Linn Soc 121:248–257

    Google Scholar 

  25. ESRI (2015) ArcGIS Desktop: release 10.3

  26. Evison SEF, Ratnieks FLW (2007) New role for majors in Atta leafcutter ants. Ecol Entomol 32:451–454

    Google Scholar 

  27. Evison SEF, Hughes WOH (2011) Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98:643–649

    CAS  PubMed  Google Scholar 

  28. Eweleit L, Reinhold K (2014) Body size and elevation: do Bergmann’s rule and Rensch’s rule apply in the polytypic bushcricket Poecilimon veluchianus? Ecol Entomol 39:133–136

    Google Scholar 

  29. Falconer DS, Mackay TFC (1996) Introducción a la genética cuantitativa. Editorial Acribia, España

    Google Scholar 

  30. García-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution (N Y) 51:21–28

    Google Scholar 

  31. Geraghty MJ, Dunn RR, Sanders NJ (2007) Body size, colony size, and range size in ants (Hymenoptera: Formicidae): are patterns along elevational and latitudinal gradients consistent with Bergmann’s Rule? Myrmecol News 10:51–58

    Google Scholar 

  32. Gómez-Lopera N, López-Gallego C (2014) Estimación de heredabilidad y correlaciones genéticas en caracteres morfológicos y fisiológicos para una población de Zamia obliqua A.Br. (Zamiaceae: Cycadales). Actualidades Biol 36:137–148

    Google Scholar 

  33. Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manage 148:185–206

    Google Scholar 

  34. Haatanen M-K, Sorvari J (2014) Similarity of body size in queens of the wood ant Formica aquilonia from optimal and sub-optimal habitats indicates a strong heritable component. J Insect Sci 13:1–11

    Google Scholar 

  35. Hawkins BA, Devries PJ (1996) Altitudinal gradients in the body sizes of Costa Rican butterflies. Acta Oecol 17:185–194

    Google Scholar 

  36. Hawkins BA, Lawton JH (1995) International association for ecology latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia 102:31–36

    PubMed  Google Scholar 

  37. Helanterä H, Ratnieks FLW (2008) Geometry explains the benefits of division of labour in a leafcutter ant. Proc R Soc B Biol Sci 275:1255–1260

    Google Scholar 

  38. Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev Camb Philos Soc 80:489–513

    PubMed  Google Scholar 

  39. Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin

    Google Scholar 

  40. Horne CR, Hirst AG, Atkinson D (2018) Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 32:948–957

    Google Scholar 

  41. Hughes WOH, Sumner S, Van Borm S et al (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Natl Acad Sci 100:9394–9397

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hughes WHO, Bot ANM, Boomsma JJ (2009) Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants. Proc R Soc B Biol Sci 277:609–615

    Google Scholar 

  43. Janssens MJJ (1979) Co-heritability: Its relation to correlated response, linkage, and pleiotropy in cases of polygenic inheritance. Euphytica 28:601–608

    Google Scholar 

  44. James FC (1970) Geographic size variation in birds and its relationship to climate. Ecology 51:365–390

    Google Scholar 

  45. Kenward M, Roger J (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    CAS  PubMed  Google Scholar 

  46. Lindman RH (1974) Analysis of variance in complex experimental design. W. H, Freeman and Co, New York

    Google Scholar 

  47. Linksvayer TA (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution 60:2552–2561

    PubMed  Google Scholar 

  48. Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364

    CAS  PubMed  Google Scholar 

  49. Mondino VA, Pastorino MJ, Gallo LA (2019) Variación altitudinal de caracteres fenológicos y crecimiento inicial en condiciones controladas entre poblaciones de Nothofagus pumilio provenientes del centro-oeste de Chubut, Argentina. Bosque 40:87–94

    Google Scholar 

  50. Montoya-Lerma JM, Chacón De Ulloa P, del Manzano MR (2006) Characterization of the nests of the leaf-cutting ant Atta cephalotes (Hymenoptera: Myrmicinae) in Cali (Colombia). Rev Colomb Entomol 32:151–158

    Google Scholar 

  51. Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s Rule. Evolution 51:630–632

    PubMed  Google Scholar 

  52. Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22:408–413

    Google Scholar 

  53. Owen RE, Harder LD (1995) Heritable allometric variation in bumble bees: opportunities for colony-level selection of foraging ability. J Evol Biol 8:725–738

    Google Scholar 

  54. Rodríguez-Jimenez A, Sarmiento CE (2008) Altitudinal distribution and body resource allocation in a High Mountain social wasp (Hymenoptera: Vespidae). Neotrop Entomol 37:1–7

    PubMed  Google Scholar 

  55. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  56. Sandoval-Arango S (2020) RawData_Sandoval_et_al_Divergence_in_Bergmann_clines_leaf-cutting_ant Dryad. Dataset. https://doi.org/10.5061/dryad.jsxksn06d

    Article  Google Scholar 

  57. Shelomi M (2012) Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. Am Nat 180:511–519

    PubMed  Google Scholar 

  58. Stürup M, den Boer SPA, Nash DR et al (2011) Variation in male body size and reproductive allocation in the leafcutter ant Atta colombica: estimating variance components and possible trade-offs. Insect Soc 58:47–55

    Google Scholar 

  59. Vinarski MV (2014) On the applicability of Bergmann’s rule to ectotherms: the state of the art. Biol Bull Rev 4:232–242

    Google Scholar 

  60. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era-concepts and misconceptions. Nat Rev Genet 9:255–266

    CAS  PubMed  Google Scholar 

  61. Van Voorhies WA (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50:1259–1264

    PubMed  Google Scholar 

  62. Waddington SJ, Santorelli LA, Ryan FR et al (2010) Genetic polyethism in leaf-cutting ants. Behav Ecol 21:1165–1169

    Google Scholar 

  63. Warzecha D, Diekötter T, Wolters V et al (2016) Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landscape Ecol 31:1449–1455

    Google Scholar 

  64. Wetterer JK (1999) The ecology and evolution of worker size-distribution in leaf-cutting ants (Hymenoptera: Formicidae). Sociobiology 34:119–144

    Google Scholar 

  65. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  66. Yang AS, Martin CH, Nijhout HF (2004) Geographic variation of caste structure among ant populations. Curr Biol 14:514–519

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Inge Armbrecht, Cristina Gallego, Lucimar Dias, Shirley Palacios, Hernando Vallejo, and Sergio Martínez for their support and assistance with field work. Special thanks to the workers at UMATA in Santa Rosa de Cabal and the National Association of Coffee Growers in Palestina for helping in finding nest sites. We are also grateful to Carlos Sarmiento from UNAL and students in the GEANHA and Ant Ecology research groups at Universidad del Valle for comments and suggestions that improved this manuscript. We thank the Laboratorio de imágenes of postgrado Ciencias-Biología, Universidad del Valle and Juan Felipe Ortega for helping in taking pictures for Fig. 2, and Mauro Zucconi for helping with R Studio and the ggplot2 package used to create Fig. 3. Finally, we thank three anonymous reviewers for comments that improved the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sandoval-Arango.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sandoval-Arango, S., Cárdenas Henao, H. & Montoya-Lerma, J. Divergence in Bergmann’s clines: elevational variation and heritability of body size in a leaf-cutting ant. Insect. Soc. (2020). https://doi.org/10.1007/s00040-020-00771-8

Download citation

Keywords

  • Atta cephalotes
  • Heritable character
  • Intraspecific variation
  • Morphometry
  • Size clines