Skip to main content
Log in

Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae)

  • Short Communication
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Cuticle quality is of vital importance in insects. It prevents desiccation, provides mechanical strength and protects against pathogens. The within-species variation of cuticular structure is affected by many factors. We investigated the relationship of the presence/absence of the ectoparasitic fungus Rickia wasmannii and cuticle thickness of its ant host Myrmica scabrinodis. Infected ants had thinner cuticle than uninfected ones, while there were also differences among populations. It is unclear whether reduced thickness is the host’s response, or whether the fungus infects preferentially colonies with ants that have a thin cuticle. Either way, within-species variation is linked to the presence of an epicuticular parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Báthori F, Csata E, Tartally A (2015) Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J Invertebr Pathol 126:78–82

    Article  PubMed  Google Scholar 

  • Benjamin RK (1971) Introduction and supplement to Roland Thaxter’s contribution towards a monograph of the Laboulbeniaceae. Lehre, New York, p 155

    Google Scholar 

  • Csata E, Erős K, Markó B (2014) Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc 61:247–252

    Article  Google Scholar 

  • Csata E, Timuş N, Witek M, Casacci LP, Lucas C, Bagnères AG, Sztencel-Jabłonka A, Barbero F, Bonelli S, Rákosy L, Markó B (2017a) Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci Rep 7:46323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csata E, Bernadou A, Rákosy-Tican E, Heinze J, Markó B (2017b) Age-related effects of fungal infection and physiological condition on the locomotory behavior of the ant Myrmica scabrinodis. J Insect Physiol 98:167–172

    Article  PubMed  CAS  Google Scholar 

  • Espadaler X, Santamaria S (2012) Ecto- and endoparasitic fungi on ants from the Holarctic Region. psyche:1–10

  • Fox J, Weisberg S (2011) An {R} companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Hopkins TL, Kramer KJ (1992) Insect cuticle sclerotization. Annu Rev Entomol 37:273–302

    Article  CAS  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric 312 models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Hughes DP, Araujo JPM, Loreto RG, Quevillon L, de Bekker C, Evans HC (2016) From so simple a beginning: the evolution of behavioral manipulation by fungi. Adv Genet 94:437–469

    PubMed  CAS  Google Scholar 

  • Małagocka J, Bruun Jensen A, Eilenberg J (2017) Pandora formicae, a specialist ant pathogenic fungus: new insights into biology and taxonomy. J Invertebr Pathol 143:108–114

    Article  PubMed  CAS  Google Scholar 

  • Markó B, Csata E, Erős K, Német E, Czekes ZS, Rózsa L (2016) Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J Invertebr Pathol 136:74–80

    Article  PubMed  Google Scholar 

  • Moroń D, Witek M, Woyciechowski M (2008) Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim Behav 75:345–350

    Article  Google Scholar 

  • Nation JL (2016) Insect physiology and biochemistry, 3rd edn. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

  • Peeters C, Molet M, Lin CC, Billen J (2017) Evolution of cheaper workers in ants: a comparative study of exoskeleton thickness. Biol J Linn Soc 121:556–563

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D (2016) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–128. http://CRAN.R-project.org/package=nlme

  • Radchenko AG, Elmes GW (2010) Myrmica ants (Hymenoptera, Formicidae) of the old world. Natura Optima Dux Foundation, Warszawa

    Google Scholar 

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Roy HE, Steinkraus DC, Eilenberg J, Hajek AE, Pell JK (2006) Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu Rev Entomol 51:331–357

    Article  PubMed  CAS  Google Scholar 

  • Santamaria S, Espadaler X (2015) Rickia lenoirii, a new ectoparasitic species, with comments on world Laboulbeniales associated with ants. Mycoscience 56:224–229

    Article  Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

    Google Scholar 

  • Shik JZ, Kaspari M, Yanoviak SP (2011) Preliminary assessment of metabolic costs of the nematode Myrmeconema neotropicum on its host, the tropical ant Cephalotes atratus. J Parasitol 97:958–959

    Article  PubMed  Google Scholar 

  • St. Leger RJ, Charnley AK, Cooper RM (1987) Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch Biochem Biophys 253:221–232

    Article  PubMed  CAS  Google Scholar 

  • Tragust S, Tartally A, Espadaler X, Billen J (2016) Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol News 23:81–89

    Google Scholar 

  • Verble RM, Meyer AD, Kleve MG, Yanoviak SP (2012) Exoskeletal thinning in Cephalotes atratus ants (Hymenoptera: Formicidae) parasitized by Myrmeconema neotropicum (Nematoda: Tetradonematidae). J Parasitol 98:226–228

    Article  PubMed  Google Scholar 

  • Vincent JF, Wegst UG (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:187–199

    Article  PubMed  Google Scholar 

  • Weir A, Blackwell M (2005) Phylogeny of arthropod ectoparasitic ascomycetes. In: Vega FE, Blackwell M (eds) Insect-Fungal Associations: ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Witek M, Barbero F, Markó M (2014) Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc 6:307–323

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Birgit Lautenschläger and An Vandoren for their considerable help with the preparation of the histological sections. We are grateful to Alexandra Schrempf, Kriszta-Kincső Keresztes, Magdalena Witek, István Maák, Piotr Ślipiński and Luca Pietro Casacci for their advices and for their help during field collection. We also thank the critical comments of two anonymous referees. E.Cs. and B.M. were supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, project number PN-II-RU-TE-2014-4-1930. B.M. was also supported by the Bolyai János scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Csata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csata, E., Billen, J., Bernadou, A. et al. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insect. Soc. 65, 503–506 (2018). https://doi.org/10.1007/s00040-018-0628-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-018-0628-5

Keywords

Navigation