Blind Reconstruction of Binary Linear Block Codes Based on Association Rules Mining


In cognitive radio context, the coding parameters are unknown at the receiver. The design of an intelligent receiver is essentially to identify these parameters from the received data blindly. In this paper, we are interested in the blind identification of binary linear block codes from received noisy data. In order to recognize the code length, the concept of the normalized column weight vector is defined and cosine similarity is used to measure the difference between linear block codes and random codes. Then, the correct code length could be obtained by finding the local minimum of cosine similarity. The proposed code length recognition method needs no prior knowledge about the codes, which results in completely blind identification. To reconstruct the parity check matrix, the concept of association rules mining is introduced to the problem of blind identification of channel codes for the first time. Furthermore, five criteria are proposed to reduce the redundant rules mined by the association rules mining algorithm and to recognize the parity check vectors effectively. Simulations show that the proposed two methods have excellent performance even in a high error rate transport environment. The performance comparisons with existing methods validate the advantages of our two proposed methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.


  1. 1.

    R. Agrawal, I. Tomasz, S. Arun, Mining association rules between sets of items in large databases, in Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)

  2. 2.

    R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pp. 487–499 (1994)

  3. 3.

    J. Apostolakis, An introduction to data mining. Data Min. Crystallogr. 134, 1–35 (2010)

    Google Scholar 

  4. 4.

    J. Barbier, G. Sicot, S. Houcke, B.T. Bretagne, Algebraic approach for the reconstruction of linear and convolutional error correcting codes. Int. J. Appl. Math. Comput. Sci. 2(3), 113–118 (2006)

    Google Scholar 

  5. 5.

    A. Bonvard, S. Houcke, R. Gautier et al., Classification based on euclidean distance distribution for blind identification of error correcting codes in noncooperative contexts. IEEE Trans. Signal Process. 66(10), 2572–2583 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    G. Burel, R. Gautier, Blind estimation of encoder and interleaver characteristics in a non cooperative context, in IASTED International Conference on Communications, Internet and Information Technology (ACTA Press, Scottsdale, 2003), pp. 275–280

  7. 7.

    A. Canteaut, F. Chabaud, A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)

    MathSciNet  Article  Google Scholar 

  8. 8.

    J. Català-Pérez, M. Lacruz, O. García-Herrero, F. Valls, D. Declercq, Second minimum approximation for min-sum decoders suitable for high-rate LDPC codes. Circuits Syst. Signal Process. 38(11), 5068–5080 (2019)

    Article  Google Scholar 

  9. 9.

    A. Ceglar, J. Roddick, Association mining. ACM Comput. Surv. (CSUR) 38(2), 5 (2006)

    Article  Google Scholar 

  10. 10.

    C. Chabot, Recognition of a code in a noisy environment, in 2007 IEEE International Symposium on Information Theory, pp. 2211–215 (2007)

  11. 11.

    C. Choi, D. Yoon, Enhanced blind interleaver parameters estimation algorithm for noisy environment. IEEE Access. 6, 5910–5915 (2018)

    Article  Google Scholar 

  12. 12.

    P. Chose, A. Joux, M. Mitton, Fast correlation attacks: an algorithmic point of view, in International Conference on the Theory and Applications of Cryptographic Techniques (Springer, Berlin, 2002) pp. 209–221

  13. 13.

    M. Cluzeau, Block code reconstruction using iterative decoding techniques, in 2006 IEEE International Symposium on Information Theory, pp. 2269–2273 (2006)

  14. 14.

    M. Cluzeau, M. Finiasz, Recovering a code's length and synchronization from a noisy intercepted bitstream, in 2009 IEEE International Symposium on Information Theory, pp. 2737–2741 (2009)

  15. 15.

    T. Fowdur, P. Soyjaudah, Hybrid joint source channel decoding for progressive JPEG image transmission. Circuits Syst. Signal Process. 29(5), 857–879 (2010)

    Article  Google Scholar 

  16. 16.

    F. García-Herrero, J. Valls, P.K. Meher, High-speed RS(255, 239) decoder based on LCC decoding. Circuits Syst. Signal Process. 30(6), 1643–1669 (2011)

    MathSciNet  Article  Google Scholar 

  17. 17.

    W.H. Guo, X.Q. Zuo, J.W. Yu et al., Method for mid-long-term prediction of landslides movements based on optimized apriori algorithm. Appl. Sci. 9(18), 3819 (2019)

    Article  Google Scholar 

  18. 18.

    T. Herawan, M.D. Mustafa, A soft set approach for association rules mining. Knowl. Based Syst. 24(1), 186–195 (2011)

    Article  Google Scholar 

  19. 19.

    H. Joshi, S. Darak, Y. Louët, Spectrum blind recovery and application in non-uniform sampling based automatic modulation classifier. Circuits Syst. Signal Process. 37(8), 3457–3486 (2018)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Y. Karimian, S. Ziapour, M.A. Attari, Parity Check Matrix Recognition from Noisy Codewords. arXiv:1205.4641v1 [cs.IT]. (2012)

  21. 21.

    T.Y. Li, X.M. Li, Novel alarm correlation analysis system based on association rules mining in telecommunication networks. Inf. Sci. 180(16), 2960–2978 (2010)

    MathSciNet  Article  Google Scholar 

  22. 22.

    C. Li, T.Q. Zhang, Y. Liu, Blind recognition of RS codes based on Galois field columns Gaussian elimination, in 2014 7th International Congress on Image and Signal Processing, pp. 836–841 (2014)

  23. 23.

    X.Y. Liu, Y.Z. Zhao, M.H. Sun, An improved apriori algorithm based on an evolution-communication tissue-like P system with promoters and inhibitors. Discrete Dyn. Nat. Soc. 2017, 11 (2017)

    Google Scholar 

  24. 24.

    B. Miller, Problem solving with algorithms and data structures using python. Braz. J. Biol. 70, 483–490 (2012)

    Google Scholar 

  25. 25.

    G. Musab, L. Laouamer, L. Nana et al., A blind spatial domain-based image watermarking using texture analysis and association rules mining. Multimed. Tools Appl. 78(12), 15705–15750 (2019)

    Article  Google Scholar 

  26. 26.

    M. Osman, H. Fahmy, Y. Fahmy, M. Elsabrouty, A. Shalash, Two extended programmable BCH soft decoders using least reliable bits reprocessing. Circuits Syst. Signal Process. 33(5), 1369–1391 (2014)

    Article  Google Scholar 

  27. 27.

    A. Perkis, On the importance of error resilience in visual communications over noisy channels. Circuits Syst. Signal Process. 20(3–4), 415–446 (2001)

    Article  Google Scholar 

  28. 28.

    G. Perrone, J. Valls, V. Torres, F. García-Herrero, Reed–Solomon decoder based on a modified ePIBMA for Low-Latency 100 Gbps communication systems. Circuits Syst Signal Process. 38(4), 1793–1810 (2019)

    Article  Google Scholar 

  29. 29.

    G. Sicot, S. Houcke, J. Barbier, Blind detection of interleaver parameters. Signal Process. 89(4), 450–462 (2009)

    Article  Google Scholar 

  30. 30.

    R. Sirigina, P. Madhukumar, A. Vinod, Diversity gain region of Nakagami-m faded Z-channel. Circuits Syst. Signal Process. 36, 2184–2197 (2017)

    Article  Google Scholar 

  31. 31.

    R. Srikant, R. Agrawal, Mining generalized association rules. Future Gener. Comput. Syst. 13(2–3), 161–180 (1997)

    Article  Google Scholar 

  32. 32.

    W. Sulek, Non-binary LDPC decoders design for maximizing throughput of an FPGA implementation. Circuits Syst. Signal Process 35(11), 4060–4080 (2016)

    Article  Google Scholar 

  33. 33.

    A. Valembois, Detection and recognition of a binary linear code. Discrete Appl. Math. 111(1), 199–218 (2001)

    MathSciNet  Article  Google Scholar 

  34. 34.

    B.W. Wang, D. Chen, J.D. Zhang et al., Comprehensive association rules mining of health examination data with an extended FP-growth method. Mobile Netw. Appl. 22(2), 267–274 (2017)

    Article  Google Scholar 

  35. 35.

    Z. Wu, Z. Zhong, L. Zhang, Blind recognition of cyclic codes based on average cosine conformity. IEEE Trans. Signal Process. 68, 2328–2339 (2020)

    MathSciNet  Article  Google Scholar 

  36. 36.

    H.Y. Yuan, H.Y. Song, X. Sun, K. Guo, Compressive sensing measurement matrix generator based on improved SC-array LDPC code. Circuits Syst. Signal Process 35(3), 977–992 (2016)

    MathSciNet  Article  Google Scholar 

  37. 37.

    J.J. Zan, Y.B. Li, Blind recognition of low code-rate binary linear block codes. Radio 39(1), 19–22 (2009)

    MathSciNet  Google Scholar 

  38. 38.

    Y. Zhang, X.R. Ma, D. Cao, Automatic modulation recognition based on morphological operations. Circuits Syst Signal Process. 32(5), 2517–2525 (2013)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Y. Zrelli, R.Gautier, E. Rannou, M. Marazin, E. Radoi, Focus on Theoretical Properties of Blind Convolutional Codes Identification Methods Based on Rank Criterion, in 2012 9th International Conference on Communications (COMM), pp. 353–356 (2012)

Download references

Author information



Corresponding author

Correspondence to Jinhong Guo.

Additional information

Publishers Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.




Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Ren, C. & Guo, J. Blind Reconstruction of Binary Linear Block Codes Based on Association Rules Mining. Circuits Syst Signal Process (2021).

Download citation


  • Blind recognition
  • Linear block codes
  • Association rules
  • Cosine similarity