Sparse Estimation Technique for Digital Pre-distortion of Impedance-Mismatched Power Amplifiers

Abstract

This paper proposes the application of the Wiener–Hammerstein with feedback (WHFB) model as a digital pre-distortion (DPD) behavioural model for power amplifiers (PA) under load impedance mismatch, since more traditional models suffer performance degradation in this condition. Moreover, this paper proposes the use of the least absolute shrinkage and selection operator (LASSO) approach for the sparse, parsimonious estimation of the WHFB model. Using this technique, the number of coefficients is significantly reduced, thus reducing the DPD running complexity. Additionally, block-oriented LASSO extensions, such as group-LASSO and sparse-group LASSO, are proposed for model dimensioning, i.e. for setting parameters values. Finally, a simplified approximate technique is proposed, in which the most relevant blocks in the model are selected prior to running LASSO, resulting in lower estimation cost. Experimental results demonstrate the ability of the proposed techniques to adequately linearize PAs subject to load impedance mismatch.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    A.H. Abdelhafiz, O. Hammi, A. Zerguine, A.T. Al-Awami, F.M. Ghannouchi, A PSO based memory polynomial predistorter with embedded dimension estimation. IEEE Trans. Broadcast. 59(4), 665–673 (2013). https://doi.org/10.1109/TBC.2013.2285631

    Article  Google Scholar 

  2. 2.

    A. Abdelhafiz, O. Hammi, A. Kwan, F. Ghannouchi, Digital predistortion of LTE-A power amplifiers using compressed sampling based unstructured pruning of Volterra series. IEEE Trans. Microw. Theory Tech. (2014). https://doi.org/10.1109/TMTT.2014.2360845

    Article  Google Scholar 

  3. 3.

    H. Akaike, A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    M. Akmal, J. Lees, S. Bensmida, S. Woodington, V. Carrubba, S. Cripps, J. Benedikt, K. Morris, M. Beach, J. McGeehan, P.J. Tasker, The effect of baseband impedance termination on the linearity of GaN HEMTs, in The 40th European Microwave Conference (2010), pp. 1046–1049. https://doi.org/10.23919/EUMC.2010.5616369

  5. 5.

    M.H. Alsharif, R. Nordin, Evolution towards fifth generation (5G) wireless networks: current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommun. Syst. 64(4), 617–637 (2017). https://doi.org/10.1007/s11235-016-0195-x

    Article  Google Scholar 

  6. 6.

    S. Arlot, A. Celisse, A survey of cross-validation procedures for model selection. Statist. Surv. 4, 40–79 (2010). https://doi.org/10.1214/09-SS054

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    H. Banks, M.L. Joyner, AIC under the framework of least squares estimation. Appl. Math. Lett. 74, 33–45 (2017). https://doi.org/10.1016/j.aml.2017.05.005

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    F.M. Barradas, P.M. Toma, J.M. Gomes, T.R. Cunha, P.M. Cabral, J.C. Pedro, Power, linearity, and efficiency prediction for MIMO arrays with antenna coupling. IEEE Trans. Microw. Theory Tech. 65(12), 5284–5297 (2017). https://doi.org/10.1109/TMTT.2017.2766067

    Article  Google Scholar 

  9. 9.

    E. Bonfim, E. Lima, A modified two dimensional Volterra-based series for the low-pass equivalent behavioral modeling of RF power amplifiers. Prog. Electromagn. Res. M 47, 27–35 (2016). https://doi.org/10.2528/PIERM15122806

    Article  Google Scholar 

  10. 10.

    R.N. Braithwaite, Digital predistortion of an RF power amplifier using a reduced Volterra series model with a memory polynomial estimator. IEEE Trans. Microw. Theory Tech. 65(10), 3613–3623 (2017). https://doi.org/10.1109/TMTT.2017.2729513

    Article  Google Scholar 

  11. 11.

    J. Brinkhoff, A.E. Parker, Effect of baseband impedance on FET intermodulation. IEEE Trans. Microw. Theory Tech. 51(3), 1045–1051 (2003). https://doi.org/10.1109/TMTT.2003.808704

    Article  Google Scholar 

  12. 12.

    J. Brinkhoff, A.E. Parker, M. Leung, Baseband impedance and linearization of FET circuits. IEEE Trans. Microw. Theory Tech. 51(12), 2523–2530 (2003). https://doi.org/10.1109/TMTT.2003.819208

    Article  Google Scholar 

  13. 13.

    D.L. Bueno, Q.A. Pham, G. Montoro, P.L. Gilabert, Independent digital predistortion parameters estimation using adaptive principal component analysis. IEEE Trans. Microw. Theory Tech. 66(12), 5771–5779 (2018). https://doi.org/10.1109/TMTT.2018.2870420

    Article  Google Scholar 

  14. 14.

    J. Cai, R. Gonçalves, J.C. Pedro, A new complex envelope behavioral model for load mismatched power amplifiers. Int. J. RF Microw. Comput. Aided Eng. 27(6) (2017). https://doi.org/10.1002/mmce.21097

  15. 15.

    J. Cai, J.B. King, A. Zhu, J.C. Pedro, T.J. Brazil, Nonlinear behavioral modeling dependent on load reflection coefficient magnitude. IEEE Trans. Microw. Theory Tech. 63(5), 1518–1529 (2015). https://doi.org/10.1109/TMTT.2015.2416232

    Article  Google Scholar 

  16. 16.

    C. Cheang, P. Mak, R.P. Martins, A hardware-efficient feedback polynomial topology for DPD linearization of power amplifiers: theory and FPGA validation. IEEE Trans. Circuits Syst. I Regul. Pap. 65(9), 2889–2902 (2018). https://doi.org/10.1109/TCSI.2017.2788082

    MathSciNet  Article  Google Scholar 

  17. 17.

    X. Chen, M. Ge Xie, A split-and-conquer approach for analysis of extraordinarily large data. Stat. Sin. 24(4), 1655–1684 (2014)

  18. 18.

    M.A. Davenport, M.F. Duarte, Y.C. Eldar, G. Kutyniok, Introduction to compressed sensing, in Compressed Sensing: Theory and Applications, ed. by Y.C. Eldar, G. Kutyniok (Cambridge University Press, Cambridge, 2012), pp. 1–64. https://doi.org/10.1017/CBO9780511794308.002

    Google Scholar 

  19. 19.

    M. Davies, G. Rilling, T. Blumensath, Greedy algorithms for compressed sensing, in Compressed Sensing, ed. by Y. Eldar, G. Kutyniok (Cambridge University Press, Cambridge, 2012), pp. 348–393

    Google Scholar 

  20. 20.

    J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, P. Garcia, An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans. Microw. Theory Tech. 52(2), 489–497 (2004). https://doi.org/10.1109/TMTT.2003.821909

    Article  Google Scholar 

  21. 21.

    S.K. Dhar, A. Abdelhafiz, M. Aziz, M. Helaoui, F.M. Ghannouchi, A reflection-aware unified modeling and linearization approach for power amplifier under mismatch and mutual coupling. IEEE Trans. Microw. Theory Tech. 66(9), 4147–4157 (2018). https://doi.org/10.1109/TMTT.2018.2859959

    Article  Google Scholar 

  22. 22.

    L. Ding, G. Zhou, Effects of even-order nonlinear terms on power amplifier modeling and predistortion linearization. IEEE Trans. Veh. Technol. 53, 156–162 (2004). https://doi.org/10.1109/TVT.2003.822001

    Article  Google Scholar 

  23. 23.

    L. Ding, G.T. Zhou, D.R. Morgan, Z. Ma, J.S. Kenney, J. Kim, C.R. Giardina, A robust digital baseband predistorter constructed using memory polynomials. IEEE Trans. Commun. 52(1), 159–165 (2004). https://doi.org/10.1109/TCOMM.2003.822188

    Article  Google Scholar 

  24. 24.

    T. Du, C. Yu, J. Gao, Y. Liu, S. Li, Y. Wu, An accurate physical knowledge-based model for behavioral modeling and digital predistortion of power amplifiers. Int. J. RF Microwave Comput. Aided Eng. 23(6), 682–689 (2013). https://doi.org/10.1002/mmce.20704

    Article  Google Scholar 

  25. 25.

    Z. Dunn, M. Yeary, C. Fulton, R. Rincon, Impedance-dependent wideband digital predistortion of solid-state radar amplifiers. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2290–2303 (2017). https://doi.org/10.1109/TAES.2017.2691218

    Article  Google Scholar 

  26. 26.

    G.Z. El Nashef, F. Torrès, S. Mons, T. Reveyrand, T. Monédière, E. N’Goya, R. Quéré, Second order extension of power amplifiers behavioral models for accuracy improvements, in The 40th European Microwave Conference (2010), pp. 1030–1033. https://doi.org/10.23919/EUMC.2010.5616625

  27. 27.

    M. Elad, Sparse and Redundant Representations-From Theory to Applications in Signal and Image Processing (Springer, Berlin, 2010). https://doi.org/10.1007/978-1-4419-7011-4

    Google Scholar 

  28. 28.

    C. Eun, E.J. Powers, A new Volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. 45(1), 223–227 (1997). https://doi.org/10.1109/78.552219

    Article  Google Scholar 

  29. 29.

    C. Fager, J.C. Pedro, N.B. de Carvalho, H. Zirath, F. Fortes, M.J. Rosario, A comprehensive analysis of IMD behavior in RF CMOS power amplifiers. IEEE J. Solid State Circuits 39(1), 24–34 (2004). https://doi.org/10.1109/JSSC.2003.820860

    Article  Google Scholar 

  30. 30.

    J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010). https://doi.org/10.18637/jss.v033.i01

    Article  Google Scholar 

  31. 31.

    G.P. Gibiino, K. Lukasik, P. Barmuta, A. Santarelli, D.M.M. Schreurs, F. Filicori, A two-port nonlinear dynamic behavioral model of RF PAs subject to wideband load modulation. IEEE Trans. Microw. Theory Tech. 66(2), 831–844 (2018). https://doi.org/10.1109/TMTT.2017.2759115

  32. 32.

    P.L. Gilabert, G. Montoro, D. López, N. Bartzoudis, E. Bertran, M. Payaró, A. Hourtane, Order reduction of wideband digital predistorters using principal component analysis, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), pp. 1–7. https://doi.org/10.1109/MWSYM.2013.6697687

  33. 33.

    T. Gotthans, G. Baudoin, A. Mbaye, Optimal order estimation for modeling and predistortion of power amplifiers, in 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013) (2013), pp. 1–4. https://doi.org/10.1109/COMCAS.2013.6685279

  34. 34.

    L. Guan, A. Zhu, Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers. IEEE Trans. Microw. Theory Tech. 60(3), 594–603 (2012). https://doi.org/10.1109/TMTT.2011.2182656

    Article  Google Scholar 

  35. 35.

    T. Hastie, R. Tibshirani, M. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations (Chapman and Hall/CRC, London, 2015)

    Google Scholar 

  36. 36.

    K. Hausmair, S. Gustafsson, C. Sánchez-Pérez, P.N. Landin, U. Gustavsson, T. Eriksson, C. Fager, Prediction of nonlinear distortion in wideband active antenna arrays. IEEE Trans. Microw. Theory Tech. 65(11), 4550–4563 (2017). https://doi.org/10.1109/TMTT.2017.2699962

    Article  Google Scholar 

  37. 37.

    C.M. Hurvich, C.L. Tsai, Regression and time series model selection in small samples. Biometrika 76(2), 297–307 (1989). https://doi.org/10.1093/biomet/76.2.297

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    D. Ji, J. Jeon, J. Kim, A novel load mismatch detection and correction technique for 3G/4G load insensitive power amplifier application. IEEE Trans. Microw. Theory Tech. 63(5), 1530–1543 (2015). https://doi.org/10.1109/TMTT.2015.2417862

    Article  Google Scholar 

  39. 39.

    V. Kekatos, G.B. Giannakis, Sparse Volterra and polynomial regression models: recoverability and estimation. Trans. Sig. Proc. 59(12), 5907–5920 (2011). https://doi.org/10.1109/TSP.2011.2165952

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. 37(23), 1417–1418 (2001). https://doi.org/10.1049/el:20010940

    Article  Google Scholar 

  41. 41.

    T. Kronvall, M. Juhlin, J. Swärd, S.I. Adalbjörnsson, A. Jakobsson, Sparse modeling of chroma features. Signal Process. (2016). https://doi.org/10.1016/j.sigpro.2016.06.020

    Article  Google Scholar 

  42. 42.

    P. Landin, O. Bengtsson, M. Isaksson, Power amplifier behavioural model mismatch sensitivity and the impact on digital predistortion performance, in 2009 European Microwave Conference (EuMC) (2009), pp. 338–341. https://doi.org/10.23919/EUMC.2009.5296131

  43. 43.

    P.N. Landin, K. Barba, W. Van Moer, M. Isaksson, P. Handel, Two novel memory polynomial models for modeling of RF power amplifiers. Int. J. Microw. Wirel. Technol. 7(1), 19–29 (2015). https://doi.org/10.1017/S1759078714000397

    Article  Google Scholar 

  44. 44.

    B.M. Lee, R.J.P.D. Figueiredo, Adaptive predistorters for linearization of high-power amplifiers in OFDM wireless communications. Circuits Syst. Signal Process. 25, 59–80 (2006)

    Article  Google Scholar 

  45. 45.

    L. Li, A. Ghazi, J. Boutellier, L. Anttila, M. Valkama, S.S. Bhattacharyya, Evolutionary multiobjective optimization for digital predistortion architectures, in Cognitive Radio Oriented Wireless Networks, ed. by D. Noguet, K. Moessner, J. Palicot (Springer, Cham, 2016), pp. 498–510

    Google Scholar 

  46. 46.

    S. Maas, Nonlinear Microwave and RF Circuits. Artech House (2003). https://books.google.com.br/books?id=SSw6gWLG-d4C

  47. 47.

    M. Malhotra, A.S. Sappal, SSA optimized digital pre-distorter for compensating non-linear distortion in high power amplifier. Telecommun. Syst. 72(2), 179–188 (2019). https://doi.org/10.1007/s11235-019-00565-9

    Article  Google Scholar 

  48. 48.

    L. Meier, S. van de Geer, P. Buhlmann, The group LASSO for logistic regression. J. Roy. Stat. Soc. B 70, 53–71 (2008). https://doi.org/10.1111/j.1467-9868.2007.00627.x

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    N. Meinshausen, Relaxed Lasso. Comput. Stat. Data Anal. 52(1), 374–393 (2007). https://doi.org/10.1016/j.csda.2006.12.019

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    N. Messaoudi, O. Hammi, J. Sirois, S. Boumaiza, F.M. Ghannouchi, A comparative study of power amplifiers’ sensitivity to load mismatch: Single branch vs. Doherty architectures, in 2007 Canadian Conference on Electrical and Computer Engineering (2007), pp. 1543–1546. https://doi.org/10.1109/CCECE.2007.384

  51. 51.

    F. Mkadem, D.Y. Wu, S. Boumaiza, Wiener G-functionals for nonlinear power amplifier digital predistortion, in 2012 IEEE/MTT-S International Microwave Symposium Digest (2012), pp. 1–3. https://doi.org/10.1109/MWSYM.2012.6259707

  52. 52.

    F. Mkadem, M.C. Fares, S. Boumaiza, J. Wood, Complexity-reduced Volterra series model for power amplifier digital predistortion. Analog Integr. Circ. Sig. Process 79(2), 331–343 (2014). https://doi.org/10.1007/s10470-014-0266-4

    Article  Google Scholar 

  53. 53.

    S. Moosavi, C. Widemann, W. Mathis, Behavioral modeling of nonlinear transfer systems with load-dependent X-parameters. Adv. Radio Sci. 15, 37–41 (2017). https://doi.org/10.5194/ars-15-37-2017

    Article  Google Scholar 

  54. 54.

    D.R. Morgan, Z. Ma, J. Kim, M.G. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006). https://doi.org/10.1109/TSP.2006.879264

    Article  MATH  Google Scholar 

  55. 55.

    E. Ngoya, S. Mons, Progress for behavioral challenges: a summary of time-domain behavioral modeling of RF and microwave subsystems. IEEE Microwave Mag. 15(6), 91–105 (2014). https://doi.org/10.1109/MMM.2014.2332853

    Article  Google Scholar 

  56. 56.

    G. Norris, J. Staudinger, J. Chen, C. Rey, P. Pratt, R. Sherman, H. Fraz, Application of digital adaptive pre-distortion to mobile wireless devices, in 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2007), pp. 247–250. https://doi.org/10.1109/RFIC.2007.380875

  57. 57.

    J.C. Pedro, N.B. Carvalho, P.M. Lavrador, Modeling nonlinear behavior of band-pass memoryless and dynamic systems, in IEEE MTT-S International Microwave Symposium Digest, 2003, vol. 3 (2003), pp. 2133–2136. https://doi.org/10.1109/MWSYM.2003.1210584

  58. 58.

    J.C. Pedro, S.A. Maas, A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microw. Theory Tech. 53(4), 1150–1163 (2005). https://doi.org/10.1109/TMTT.2005.845723

    Article  Google Scholar 

  59. 59.

    R. Piazza, B.S.M.R. Rao, B. Ottersten, Data predistortion for multicarrier satellite channels using orthogonal memory polynomials, in 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2013), pp. 689–693. https://doi.org/10.1109/SPAWC.2013.6612138

  60. 60.

    C.D. Presti, D.F. Kimball, P.M. Asbeck, Closed-loop digital predistortion system with fast real-time adaptation applied to a handset WCDMA PA module. IEEE Trans. Microw. Theory Tech. 60(3), 604–618 (2012). https://doi.org/10.1109/TMTT.2011.2181860

    Article  Google Scholar 

  61. 61.

    H. Qi, J. Benedikt, P.J. Tasker, Nonlinear data utilization: from direct data lookup to behavioral modeling. IEEE Trans. Microw. Theory Tech. 57(6), 1425–1432 (2009). https://doi.org/10.1109/TMTT.2009.2019996

    Article  Google Scholar 

  62. 62.

    H. Qian, S. Yao, H. Huang, W. Feng, A low-complexity digital predistortion algorithm for power amplifier linearization. IEEE Trans. Broadcast. 60(4), 670–678 (2014). https://doi.org/10.1109/TBC.2014.2352911

    Article  Google Scholar 

  63. 63.

    C. Quindroit, N. Naraharisetti, P. Roblin, S. Gheitanchi, V. Mauer, M. Fitton, FPGA implementation of orthogonal 2D digital predistortion system for concurrent dual-band power amplifiers based on time-division multiplexing. IEEE Trans. Microw. Theory Tech. 61(12), 4591–4599 (2013). https://doi.org/10.1109/TMTT.2013.2288220

    Article  Google Scholar 

  64. 64.

    A. Rahati, S. Motamedi, S. Sharifian, A novel generalized parallel two-box structure for behavior modeling and digital predistortion of RF power amplifiers at lte applications. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0700-9

    Article  MATH  Google Scholar 

  65. 65.

    R. Raich, H. Qian, G.T. Zhou, Orthogonal polynomials for power amplifier modeling and predistorter design. IEEE Trans. Veh. Technol. 53(5), 1468–1479 (2004). https://doi.org/10.1109/TVT.2004.832415

    Article  Google Scholar 

  66. 66.

    K. Rawat, M.S. Hashmi, F.M. Ghannouchi, Dual-band RF circuits and components for multi-standard software defined radios. IEEE Circuits Syst. Mag. 12(1), 12–32 (2012). https://doi.org/10.1109/MCAS.2011.2181074

    Article  Google Scholar 

  67. 67.

    J. Reina Tosina, M. Allegue Martinez, C. Crespo Cadenas, C. Yu, S. Cruces, Behavioral modeling and predistortion of power amplifiers under sparsity hypothesis. IEEE Trans. Microw. Theory Tech. 63(2), 745–753 (2015). https://doi.org/10.1109/TMTT.2014.2387852

    Article  Google Scholar 

  68. 68.

    M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Krieger Publishing Co. Inc, Melbourne, FL, 2006)

    Google Scholar 

  69. 69.

    L. Schuartz, E. Santos, B. Leite, A. Mariano, E. Lima, Reduced-complexity polynomials with memory applied to the linearization of power amplifiers with real-time discrete gain control. Circuits Syst. Signal Process. (2019). https://doi.org/10.1007/s00034-019-01049-6

    Article  Google Scholar 

  70. 70.

    R. Schumacher, E. Lima, G. Oliveira, RF power amplifier behavioral modeling based on Takenaka-Malmquist-Volterra series. Circuits Syst. Signal Process. 35, 1 (2015). https://doi.org/10.1007/s00034-015-0151-0

  71. 71.

    S. Sesia, I. Toufik, M. Baker, LTE, The UMTS Long Term Evolution: From Theory to Practice (Wiley Publishing, Hoboken, 2009)

    Google Scholar 

  72. 72.

    N. Simon, J. Friedman, T. Hastie, R. Tibshirani, A sparse-group Lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    MathSciNet  Article  Google Scholar 

  73. 73.

    G. Simpson, J. Horn, D. Gunyan, D.E. Root, Load-pull + NVNA = enhanced X-parameters for PA designs with high mismatch and technology-independent large-signal device models, in 2008 72nd ARFTG Microwave Measurement Symposium (2008), pp. 88–91. https://doi.org/10.1109/ARFTG.2008.4804301

  74. 74.

    L. Stankovic, E. Sejdic, S. Stankovic, M. Dakovic, I. Orovic, A tutorial on sparse signal reconstruction and its applications in signal processing. Circuits Syst. Signal Process. 38, 1206–1263 (2018)

    Article  Google Scholar 

  75. 75.

    J. Staudinger, J. Nanan, J. Wood, Memory fading Volterra series model for high power infrastructure amplifiers, in 2010 IEEE Radio and Wireless Symposium (RWS) (2010), pp. 184–187. https://doi.org/10.1109/RWS.2010.5434137

  76. 76.

    C. Tarver, M. Abdelaziz, L. Anttila, M. Valkama, J. Cavallaro, Low-complexity, multi sub-band digital predistortion: Novel algorithms and SDR verification. J. Signal Process. Syst. (2017). https://doi.org/10.1007/s11265-017-1303-1

    Article  Google Scholar 

  77. 77.

    A.S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, C. Fager, A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models. IEEE Trans. Microw. Theory Tech. 58(6), 1510–1520 (2010). https://doi.org/10.1109/TMTT.2010.2047920

    Article  Google Scholar 

  78. 78.

    R. Tibshirani, Regression shrinkage and selection via the Lasso. J. R. Stat. Soc Ser. B Methodol. 58(1), 267–288 (1996)

  79. 79.

    R. Tibshirani, T. Hastie, J. Friedman, Regularized paths for generalized linear models via coordinate descent. J. Stat. Softw. (2010). https://doi.org/10.1163/ej.9789004178922.i-328.7

    Article  Google Scholar 

  80. 80.

    M. Valkama, A. Springer, G. Hueber, Digital signal processing for reducing the effects of RF imperfections in radio devices—an overview, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (2010), pp. 813–816. https://doi.org/10.1109/ISCAS.2010.5537444

  81. 81.

    A. van Bezooijen, R. Mahmoudi, A. van Roermund, Adaptive RF Front-Ends for Hand-Held Applications. Analog Circuits and Signal Processing (Springer, Dordrecht, 2010)

    Google Scholar 

  82. 82.

    Verspecht, D.E. Root, Polyharmonic distortion modeling. IEEE Microw. Mag. 7(3), 44–57 (2006). https://doi.org/10.1109/MMW.2006.1638289

  83. 83.

    J. Vuolevi, T. Rahkonen, Distortion in RF Power Amplifiers (Artech House Publishers, London, 2003)

    Google Scholar 

  84. 84.

    S. Wang, M. Abi Hussein, G. Baudoin, O. Venard, T. Gotthans, Comparison of hill-climbing and genetic algorithms for digital predistortion models sizing (2016), pp. 289–292. https://doi.org/10.1109/ICECS.2016.7841189

  85. 85.

    S. Wang, M.A. Hussein, O. Venard, G. Baudoin, A novel algorithm for determining the structure of digital predistortion models. IEEE Trans. Veh. Technol. 67(8), 7326–7340 (2018). https://doi.org/10.1109/TVT.2018.2833283

    Article  Google Scholar 

  86. 86.

    D. Wisell, J. Jalden, P. Handel, Behavioral power amplifier modeling using the LASSO, in 2008 IEEE Instrumentation and Measurement Technology Conference (2008), pp. 1864–1867. https://doi.org/10.1109/IMTC.2008.4547349

  87. 87.

    G. Yang, F. Liu, L. Li, H. Wang, C. Zhao, Z. Wang, 2D orthogonal polynomials for concurrent dual-band digital predistortion, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013), pp. 1–3. https://doi.org/10.1109/MWSYM.2013.6697474

  88. 88.

    S. Yao, H. Huang, H. Qian, W. Feng, Orthonormal basis functions for memory predistorter in oversampled systems. Int. J. RF Microwave Comput. Aided Eng. 25(3), 202–212 (2014). https://doi.org/10.1002/mmce.20850

    Article  Google Scholar 

  89. 89.

    M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B 68, 49–67 (2006). https://doi.org/10.1111/j.1467-9868.2005.00532.x

    MathSciNet  Article  MATH  Google Scholar 

  90. 90.

    H. Zargar, A. Banai, J. Pedro, DIDO behavioral model extraction setup using uncorrelated envelope signals (2015), pp. 646–649. https://doi.org/10.1109/EuMC.2015.7345846

  91. 91.

    H. Zargar, A. Banai, J.C. Pedro, A new double input-double output complex envelope amplifier behavioral model taking into account source and load mismatch effects. IEEE Trans. Microw. Theory Tech. 63(2), 766–774 (2015). https://doi.org/10.1109/TMTT.2014.2387842

    Article  Google Scholar 

  92. 92.

    E. Zenteno, M. Isaksson, P. Handel, Output impedance mismatch effects on the linearity performance of digitally predistorted power amplifiers. IEEE Trans. Microw. Theory Tech. 63(2), 754–765 (2015). https://doi.org/10.1109/TMTT.2014.2387060

    Article  Google Scholar 

  93. 93.

    E. Zenteno, R. Piazza, B.S. Mysore, D. Ronnow, B. Ottersten, Low complexity predistortion and equalization in nonlinear multicarrier satellite communications. J. Adv. Signal Process. (2015). https://doi.org/10.1186/s13634-015-0215-0

    Article  Google Scholar 

  94. 94.

    A. Zhu, J. Dooley, T.J. Brazil, Simplified Volterra series based behavioral modeling of RF power amplifiers using deviation-reduction, in 2006 IEEE MTT-S International Microwave Symposium Digest (2006), pp. 1113–1116. https://doi.org/10.1109/MWSYM.2006.249958

  95. 95.

    Y. Zhu, W.X. Zheng, Multiple Lyapunov functions analysis approach for discrete-time-switched piecewise-affine systems under dwell-time constraints. IEEE Trans. Autom. Control 65(5), 2177–2184 (2020)

    MathSciNet  Article  Google Scholar 

  96. 96.

    A. Zhu, J.C. Pedro, T.R. Cunha, Pruning the Volterra series for behavioral modeling of power amplifiers using physical knowledge. IEEE Trans. Microw. Theory Tech. 55(5), 813–821 (2007). https://doi.org/10.1109/TMTT.2007.895155

    Article  Google Scholar 

  97. 97.

    Z. Zhu, H. Leung, X. Huang, Challenges in reconfigurable radio transceivers and application of nonlinear signal processing for RF impairment mitigation. IEEE Circuits Syst. Mag. 13(1), 44–65 (2013). https://doi.org/10.1109/MCAS.2012.2237143

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for partially funding this research. The authors would also like to thank the Laboratório de Microondas (LME) from the Department of Electrical Engineering, University of São Paulo (USP), especially Profs. Fatima S. Correra and Antonio Sandro Verri, and Keysight Technologies for supporting the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cyro S. Hemsi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hemsi, C.S., Panazio, C.M. Sparse Estimation Technique for Digital Pre-distortion of Impedance-Mismatched Power Amplifiers. Circuits Syst Signal Process (2021). https://doi.org/10.1007/s00034-021-01659-z

Download citation

Keywords

  • Load impedance mismatch
  • Power amplifier (PA)
  • Behavioural modelling
  • Digital pre-distortion (DPD)
  • LASSO