A Note on Adaptive Observer Design Method for One-Sided Lipschitz Systems

Abstract

The design problem of adaptive observer for one-sided Lipschitz systems with unknown parameters is addressed. The research focuses on the nonlinear system dynamics which only satisfies one-sided Lipschitz, but not quadratic inner-boundedness. Firstly, an adaptive full-order observer is constructed. Specially, when the one-sided Lipschitz constant is negative, this observer can also be designed. By using the decomposition method, a reduced-order observer is constructed under the same assumptions. The validity of designed observers is illustrated via two examples at last.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    M. Abbaszadeh, H. Marquez, Nonlinear observer design for one-sided Lipschitz systems, in Proceedings of the 2010 American Control Conference (2010), pp. 5284–5289

  2. 2.

    M. Abbaszadeh, H. Marquez, Observer-based \({H}^{\infty }\) control using the incremental gain for one-sided Lipschitz nonlinear systems, in 2014 American Control Conference (2014), pp. 4653–4658

  3. 3.

    S. Ahmad, M. Rehan, On observer-based control of one-sided Lipschitz systems. J. Frankl. Inst. 353(4), 903–916 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    S. Ahmad, M. Rehan, K. Hong, Observer-based robust control of one-sided Lipschitz nonlinear systems. ISA Trans. 65, 230–240 (2016)

    Article  Google Scholar 

  5. 5.

    A. Barbata, M. Zasadzinski, H. Ali, H. Messaoud, Exponential observer for a class of one-sided Lipschitz stochastic nonlinear systems. IEEE Trans. Autom. Control 60(1), 259–264 (2015)

    MathSciNet  Article  Google Scholar 

  6. 6.

    G. Bastin, M.R. Gevers, Stable adaptive observers for nonlinear time-varying systems. IEEE Trans. Autom. Control 33(7), 650–658 (1988)

    MathSciNet  Article  Google Scholar 

  7. 7.

    S. Boyd, L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequlities in System and Control Theory (SIAM, Philadelphia, 1994)

    Google Scholar 

  8. 8.

    B. Brogliato, R. Lozano, B. Maschke, O. Egeland, Dissipative Systems Analysis and Control (Springer, London, 2007)

    Google Scholar 

  9. 9.

    R. Carroll, D. Lindorff, An adaptive observer for single input single output linear systems. IEEE Trans. Autom. Control 18(5), 428–435 (1973)

    MathSciNet  Article  Google Scholar 

  10. 10.

    X. Chang, G. Yang, New results on output feedback control for linear discrete-time systems. IEEE Trans. Autom. Control 59(5), 1355–1359 (2014)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Q. Fu, X. Li, L. Du, G. Xu, J. Wu, Consensus control for multi-agent systems with quasi-one-sided Lipschitz nonlinear dynamics via iterative learning algorithm. Nonlinear Dyn. 91(4), 2621–2630 (2018)

    Article  Google Scholar 

  12. 12.

    P. Gu, S. Tian, D-type iterative learning control for one-sided Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control 29(9), 2546–2560 (2019)

    MathSciNet  Article  Google Scholar 

  13. 13.

    J. Huang, X. Ma, H. Che, Z. Han, Further result on interval observer design for discrete-time switched systems and application to circuit system. IEEE Trans. Circuits Syst. II-Express Briefs (2019). https://doi.org/10.1109/TCSII.2019.2957945

    Article  Google Scholar 

  14. 14.

    J. Huang, X. Ma, X. Zhao, H. Che, An interval observer design method for asynchronous switched systems. IET Control Theory Appl. (2019). https://doi.org/10.1049/iet-cta.2019.0750

    Article  Google Scholar 

  15. 15.

    G. Hu, Observers for one-sided Lipschitz nonlinear systems. IMA J. Math. Control Inf. 23(4), 395–401 (2006)

    Article  Google Scholar 

  16. 16.

    Y. Hu, H. Lu, C. Guo, X. Liu, M. Sun, Synchronization of complex dynamic network under one-sided Lipschitz nonlinear condition, in 2019 Chinese Control and Decision Conference (2019), pp. 1292–1296

  17. 17.

    B. Jiang, M. Staroswiecki, V. Cocquempot, Fault accommodation for nonlinear dynamic systems. IEEE Trans. Autom. Control 51(9), 1578–1583 (2006)

    MathSciNet  Article  Google Scholar 

  18. 18.

    A. Jmal, O. Naifar, A.B. Makhlouf, N. Derbel, M.A. Hammami, Sensor fault estimation for fractional-order descriptor one-sided Lipschitz systems. Nonlinear Dyn. 91(3), 1713–1722 (2018)

    Article  Google Scholar 

  19. 19.

    X. Li, C.K. Ahn, D. Lu, S. Guo, Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst. Man Cybern.: Syst. 49(9), 1769–1776 (2019)

    Article  Google Scholar 

  20. 20.

    X. Li, W. Zhang, Y. Wang, Simultaneous fault estimation for Markovian jump systems with generally uncertain transition rates: A reduced-order observer approach. IEEE Trans. Ind. Electron. (2019). https://doi.org/10.1109/TIE.2019.2941144

    Article  Google Scholar 

  21. 21.

    G. Liders, K. Narendra, An adaptive observer and identifier for a linear system. IEEE Trans. Autom. Control 18(5), 496–499 (1973)

    Article  Google Scholar 

  22. 22.

    X. Liu, C. Yang, Z. Chen, M. Wang, C. Su, Neuro-adaptive observer based control of flexible joint robot. Neurocomputing 275(31), 73–82 (2018)

    Article  Google Scholar 

  23. 23.

    G. Ltiders, K. Narendra, A new canonical form for an adaptive observer. IEEE Trans. Autom. Control 19(2), 117–119 (1974)

    MathSciNet  Article  Google Scholar 

  24. 24.

    G. Lu, D.W.C. Ho, Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach. IEEE Trans. Circuits Syst. II-Express Briefs 53(7), 563–567 (2006)

    Article  Google Scholar 

  25. 25.

    J. Maes, J. Melkebeek, Speed-sensorless direct torque control of induction motors using an adaptive flux observer. IEEE Trans. Ind. Appl. 36(3), 778–785 (2000)

    Article  Google Scholar 

  26. 26.

    M.C. Nguyen, H. Trinh, Unknown input observer design for one-sided Lipschitz discrete-time systems subject to time-delay. Appl. Math. Comput. 286(5), 57–71 (2016)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    M.C. Nguyen, H. Trinh, Reduced-order observer design for one-sided Lipschitz time-delay systems subject to unknown inputs. IET Control Theory Appl. 10(10), 1097–1105 (2016)

    MathSciNet  Article  Google Scholar 

  28. 28.

    R. Nikoukhah, F. Delebecque, L. El Ghaoui, LMITOOL: A Package for LMI Optimization in Scilab User’s Guide. Research Report RT-0170, INRIA (1995)

  29. 29.

    R. Rajamani, Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)

    MathSciNet  Article  Google Scholar 

  30. 30.

    A. Rastegari, M.M. Arefi, M.H. Asemani, Robust \({H}^{\infty }\)-Sliding mode observer-based fault-tolerant control for one-sided Lipschitz nonlinear systems. Asian J. Control 21(1), 114–129 (2019)

    MathSciNet  Article  Google Scholar 

  31. 31.

    M. Rehan, A. Jameel, C.K. Ahn, Distributed consensus control of one-sided Lipschitz nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. Syst. 48(8), 1297–1308 (2018)

    Article  Google Scholar 

  32. 32.

    W. Saad, A. Sellami, G. Garcia, \({H}^{\infty }\)-Sliding mode control of one-sided Lipschitz nonlinear systems subject to input nonlinearities and polytopic uncertainties. ISA Trans. 90, 19–29 (2019)

    Article  Google Scholar 

  33. 33.

    P. Shah, B. Singh, Adaptive observer based control for roof-top solar PV system. IEEE Trans. Power Electron. 1–1 (2019)

  34. 34.

    M. Shi, J. Huang, L. Chen, L. Yu, Adaptive full-order and reduced-order observers for one-sided Lur’e systems with set-valued mappings. IMA J. Math. Control Inf. 35(2), 569–589 (2018)

    MathSciNet  Article  Google Scholar 

  35. 35.

    J. Slotine, W. Li, Applied Nonlinear Control (China Machine Press, China, 2004)

    Google Scholar 

  36. 36.

    F. Thau, Observing the state of nonlinear dynamic systems. Int. J. Control 17(3), 471–479 (1973)

    Article  Google Scholar 

  37. 37.

    J. Tian, S. Ma, C. Zhang, Unknown input reduced-order observer design for one-sided Lipschitz nonlinear descriptor Markovian jump systems. Asian J. Control 21(2), 952–964 (2019)

    MathSciNet  Article  Google Scholar 

  38. 38.

    D. Tsay, H. Chung, C. Lee, The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logics. IEEE Trans. Fuzzy Syst. 7(2), 225–229 (1999)

    Article  Google Scholar 

  39. 39.

    H. Wang, S. Daley, Actuator fault diagnosis: an adaptive observer-based technique. IEEE Trans. Autom. Control 41(7), 1073–1078 (1996)

    MathSciNet  Article  Google Scholar 

  40. 40.

    M. Xu, G.D. Hu, Y. Zhao, Rcduced-order observer design for one-sided Lipschitz nonlinear systems. IMA J. Math. Control Inf. 26(3), 299–317 (2009)

    Article  Google Scholar 

  41. 41.

    K. Zhang, B. Jiang, V. Cocquempot, Adaptive observer-based fast fault estimation. Int. J. Control Autom. Syst. 6(3), 320–326 (2008)

    Google Scholar 

  42. 42.

    W. Zhang, H. Su, F. Zhu, D. Yue, A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans. Circuits Syst. II 59(2), 123–127 (2012)

    Article  Google Scholar 

  43. 43.

    W. Zhang, H. Su, Y. Liang, Z. Han, Nonlinear observer design for one-sided Lipschitz systems: an linear matrix inequality approach. IET Control Theory Appl. 6(9), 1297–1303 (2012)

    MathSciNet  Article  Google Scholar 

  44. 44.

    W. Zhang, H. Su, F. Zhu, M. Wang, Observer-based \({H}^{\infty }\) synchronization and unknown input recovery for a class of digital nonlinear systems. Circuits Syst. Signal Process. 32(6), 2867–2881 (2013)

    MathSciNet  Article  Google Scholar 

  45. 45.

    W. Zhang, H. Su, F. Zhu, G. Azar, Unknown input observer design for one-sided Lipschitz nonlinear systems. Nonlinear Dyn. 79(2), 1469–1479 (2015)

    MathSciNet  Article  Google Scholar 

  46. 46.

    W. Zhang, H. Su, F. Zhu, P Bhattacharyya Shankar, Improved exponential observer design for one-sided Lipschitz nonlinear systems. Int. J. Robust Nonlinear Control 26(18), 3958–3973 (2016)

    MathSciNet  Article  Google Scholar 

  47. 47.

    Y. Zhao, W. Zhang, H. Su, J. Yang, Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication. IEEE Trans. Syst. Man Cybern. Syst. 1–12 (2018)

  48. 48.

    F. Zhu, Z. Han, A note on observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 47(10), 1751–1754 (2002)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (Grant No. 61074003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Huang, J., Yang, L. et al. A Note on Adaptive Observer Design Method for One-Sided Lipschitz Systems. Circuits Syst Signal Process 40, 1021–1039 (2021). https://doi.org/10.1007/s00034-020-01505-8

Download citation

Keywords

  • One-sided Lipschitz systems
  • Adaptive full-order observer
  • Reduced-order observer
  • One-sided Lipschitz constant